TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学高中数学等比数列知识点总结思维导图

高中数学等比数列知识点总结思维导图

  收藏
  分享
免费下载
免费使用文件
微风不燥 浏览量:62023-04-04 16:21:48
已被使用0次
查看详情高中数学等比数列知识点总结思维导图

高中数学中的等比数列是必考知识点等比数列定义为从第二项开始,每一项与前一项的比等于同一个常数,该常数称为公比,通常用字母q表示。等比数列有许多有关公式和概念,例如比中项的概念:若a、b、G成为等比数列,则G为a与b的等比中项,即a,G,b构成等比数列,且G等于根号ab。其中最重要的公式为通项公式:an=a1q^(n-1),和等比数列前n项和公式:Sn=a1(1-q^n)/(1-q),等比数列还具有其他性质,例如在等比数列中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a,值得注意的,在使用比数列公式时,必须小心q=1的特殊情形,以免导致解题失误。

思维导图大纲

高中数学等比数列知识点总结思维导图模板大纲

高中数学中等比数列是必考之一,等比数列是高中数学的一个重要知识点也是一个难点,很多人在学完等差数列之后再学等比数列就更容易相互混淆了。下面是树图网为大家整理的关于高中数学等比数列知识点总结,希望对您有所帮助!

等比数列公式性质知识点

1.等比数列的有关概念

(1)定义:

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).

(2)等比中项:

如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.

2.等比数列的有关公式

(1)通项公式:an=a1qn-1.

3.等比数列{an}的常用性质

(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.

特别地,a1an=a2an-1=a3an-2=….

(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.

4.等比数列的特征

(1)从等比数列的定义看,等比数列的任意项都是非零的',公比q也是非零常数.

(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

5.等比数列的前n项和Sn

(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

等比数列知识点

1.等比中项

如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2.等比数列通项公式

an=a1_q’(n-1)(其中首项是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3.等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比数列性质

(1)若m、n、p、q∈N_,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是"同构"的。

(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

(6)任意两项am,an的关系为an=am·q’(n-m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

等比数列知识点总结

等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

1:等比数列通项公式:an=a1_q^(n-1); 推广式: an=am·q^(n-m);

2: 等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an

①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②当q=1时, Sn=n×a1(q=1) 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

4:性质:

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;

②在等比数列中,依次每 k项之和仍成等比数列.

例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak_al=am_an

证明:设等比数列的首项为a1,公比为q,则 ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

所以: ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2), 故:ak_al=am_an

说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即: a(1+k)·a(n-k)=a1·an

对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即: a(1+k)+a(n-k)=a1+an

高中数学等比数列知识点总结相关文章:

★ 高中数学章节内容知识点总结2021

★ 高中高二基础数学知识点总结2021

★ 高中数学必修五知识点必备总结

★ 高考数学必考知识点归纳总结整理2021

★ 高考数学考点题型全归纳

★ 高考数学基础知识点总结2021

★ 高中必修五数学知识点必备

★ 高考最新数学知识点总结2021

★ 江苏高考数学知识点整理

★ 高一到高三数学公式和知识点归纳

相关思维导图模板

高中数学数列知识点总结:等差数列及等比数列公式思维导图

树图思维导图提供 高中数学数列知识点总结:等差数列及等比数列公式 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学数列知识点总结:等差数列及等比数列公式  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:7d08e138a94c5783bad3725ff8a2b1c3