TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学初三数学二次函数知识点总结思维导图

初三数学二次函数知识点总结思维导图

  收藏
  分享
免费下载
免费使用文件
情痞有泪 浏览量:62023-04-04 16:21:55
已被使用0次
查看详情初三数学二次函数知识点总结思维导图

初三数学二次函数知识点总结思维导图包含二次函数的定义、解析式的三种形式,和二次函数y=ax2+c的图象与性质,二次函数的定义中a必须是非零实数,而b、c是任意实数,自变量x的取值范围是实数集,二次函数的三种解析式分别为一般式、顶点式、两根式,二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴,且开口向上或向下的情况下左右两侧y值的变化趋势相反。

思维导图大纲

初三数学二次函数知识点总结思维导图模板大纲

二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线,如果令y值等于零,则可得一个二次方程。下面是树图网为大家整理的关于初三数学二次函数知识点总结,希望对您有所帮助!

初三数学二次函数知识点总结

1二次函数的定义

一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

2二次函数解析式的几种形式

(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

3二次函数y=ax2+c的图象与性质

(1)抛物线y=ax2+c的形状由a决定,位置由c决定.

(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

(3)抛物线y=ax2+c与y=ax2的关系.

抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

初三二次函数知识点总结

1二次函数及其图像

二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2 bx c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:

一般式

y=ax∧2;bx c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);

顶点式

y=a(x m)∧2 k(a≠0,a、m、k为常数)或y=a(x-h)∧2 k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

交点式

y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];

重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1x2)(y1为截距)

求根公式

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的二次函数

x1,x2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)

求根的方法还有因式分解法和配方法

在平面直角坐标系中作出二次函数y=2x的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。

不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

注意:草图要有1本身图像,旁边注明函数。

2画出对称轴,并注明X=什么

3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

轴对称

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

顶点

2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。

开口

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

决定对称轴位置的因素

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

决定抛物线与y轴交点的因素

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

抛物线与x轴交点个数

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在

{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2 c(a≠0)

特殊值的形式

7.特殊值的形式

①当x=1时y=a b c

②当x=-1时y=a-b c

③当x=2时y=4a 2b c

④当x=-2时y=4a-2b c

二次函数的性质

8.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

正无穷);②[t,正无穷)

奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。

周期性:无

解析式:

①y=ax^2 bx c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2 k[顶点式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

对称轴X=(X1 X2)/2当a>0且X≧(X1 X2)/2时,Y随X的增大而增大,当a>0且X≦(X1 X2)/2时Y随X

的增大而减小

此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

用)。

交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。

26.2用函数观点看一元二次方程

1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。

2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

26.3实际问题与二次函数

在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

初三数学二次函数知识点总结

1.二次函数的概念

二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。

2.二次函数的结构特征:

⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。

⑵是常数,是二次项系数,是一次项系数,是常数项。

2.初三数学二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]。

注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2a。

3.二次函数的性质

1.性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

2.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

4.初三数学二次函数图像

对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

对于顶点式:

①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)

初三数学二次函数知识点总结相关文章:

★ 数学的二次函数部分知识点

★ 数学的二次函数部分实用知识点

★ 2021中考数学知识点归纳(最新完整版)

★ 初三数学第一章二次函数有哪些

★ 初三数学重点难点考点归纳

★ 2021初三数学上册知识点总结及考点

★ 2022初三中考数学考前复习归纳总结

★ 中考数学知识点归纳总结整理

★ 青岛版九年级数学二次函数有哪些

★ 九年级上册数学考点整理

相关思维导图模板

初三中考数学必考知识点总结思维导图

树图思维导图提供 初三中考数学必考知识点总结 在线思维导图免费制作,点击“编辑”按钮,可对 初三中考数学必考知识点总结  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:0a991f794380e5da2812fe14001285cf

初三数学知识点总结思维导图

树图思维导图提供 初三数学知识点总结 在线思维导图免费制作,点击“编辑”按钮,可对 初三数学知识点总结  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:adc850cf189e850c5bddb621f4e57c6b