初二数学上册知识点思维导图其中轴对称图形、线段的垂直平分线、等腰三角形、等边三角形知识点是常考点,轴对称图形是指把一个图形沿着一条直线折叠,使得直线两旁的部分完全重合,而线段的垂直平分线是指经过线段中点且垂直于线段的直线,等腰三角形的两个底角相等,而等边三角形的三个角都相等每一个角都等于60度。这些知识点都有其特定的性质和判定方法,例如轴对称的两个图形是全等形,等腰三角形的顶角平分线平分底边垂直于底边,在学习中应放宽视野,综合掌握初二数学上册知识点,才能数学学习中找到自己的位置。
初二数学上册知识点思维导图模板大纲
仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。下面是树图网给大家整理的一些初二数学上册知识点的学习资料,希望对大家有所帮助。
一、轴对称图形
1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
4.轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等
3.与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
①、等腰三角形的性质
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
②、等腰三角形的其他性质:
(1)等腰直角三角形的两个底角相等且等于45°
(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
(3)等腰三角形的三边关系:设腰长为a,底边长为b,则
(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
④、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
第一章 轴对称图形(听力部分)
第二章 勾股定理与平方根
一.勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即
2、勾股定理的逆定理
如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
3、勾股数
:满足的三个正整数,称为勾股数。
二、实数的概念及分类
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
2、无理数:
无限不循环小数叫做无理数。
在理解无理数时,要抓住"无限不循环"这一时之,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率
π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60
o等
三、平方根、算数平方根和立方根
1、算术平方根:一般地,如果一个正数x的平方等于a,即x
2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。
表示方法:记作"",读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x
2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做"
",读作"正、负根号a"。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
注意的双重非负性:
3、立方根
一般地,如果一个数x的立方等于a,即x
3=a那么这个数x就叫做a 的立方根(或三次方根)。
表示方法:记作
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较
1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
(3)求商比较法:设a、b是两正实数,
(4)绝对值比较法:设a、b是两负实数,则
。
(5)平方法:设a、b是两负实数,则
。
五、实数的运算
(1)六种运算:
加、减、乘、除、乘方 、开方
(2)
实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章 中心对称图形(一)
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
★ 人教版八年级数学上册对称轴图形知识点总结
★ 初中数学各年级重点最新
★ 2021最新八年级数学复习教案
★ 初一数学上册知识点总结归纳最新2021
★ 初中数学知识点归纳之对称轴和轴对称
★ 高中数学知识点
★ 功课
★ 最新初中八年级数学上册教案例文
★ 初中数学教案答案八年级上册最新模板
树图思维导图提供 初二数学上册知识点思维导图 在线思维导图免费制作,点击“编辑”按钮,可对 初二数学上册知识点思维导图 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:a273d79a3f0bac49d87298a45b9d3a3c
树图思维导图提供 北师大初二数学上册知识点思维导图 在线思维导图免费制作,点击“编辑”按钮,可对 北师大初二数学上册知识点思维导图 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:3078913e0d828673a1100fd576f174f5