高二数学比较难,但如果抓住重点,多加练习,学渣变学霸也不是不可能的,本模板主要介绍了高二数学中的向量公式、椭圆公式、其他一些重要的数学知识点,例如函数、数列、三角函数、不等式、直线和圆的方程、圆锥曲线方程、排列组合、概率与统计、导数、复数等,都是高中数学中比较重要的内容。同时也列出了正弦定理、余弦定理、圆的标准方程、圆的一般方程、抛物线标准方程,和倍角公式、半角公式、和差化积,还有乘法因式分解、阶乘公式相对基础些的公式,掌握这些公式和知识点能够帮助大家更好的学习高中数学。
高二数学常用公式总结思维导图模板大纲
高中数学比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。下面是树图网为大家整理的关于高二数学常用公式总结,希望对您有所帮助!
1.单位向量:单位向量a0=向量a/|向量a|
2.P(_,y)那么向量OP=_向量i+y向量j
|向量OP|=根号(_平方+y平方)
3.P1(_1,y1)P2(_2,y2)
那么向量P1P2={_2-_1,y2-y1}
|向量P1P2|=根号[(_2-_1)平方+(y2-y1)平方]
4.向量a={_1,_2}向量b={_2,y2}
向量a_向量b=|向量a|_|向量b|_Cosα=_1_2+y1y2
Cosα=向量a_向量b/|向量a|_|向量b|
(_1_2+y1y2)
根号(_1平方+y1平方)_根号(_2平方+y2平方)
5.空间向量:同上推论
(提示:向量a={_,y,z})
6.充要条件:
如果向量a⊥向量b
那么向量a_向量b=0
如果向量a//向量b
那么向量a_向量b=±|向量a|_|向量b|
或者_1/_2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a_向量b
=(向量a±向量b)平方
一
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
二
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py
直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h
正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2
圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r
锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s_h圆柱体V=p_r2h
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系_1+_2=-b/a_1__2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根
三
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
正整数阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是_,_就是n的阶乘。
任何大于1的自然数n阶乘表示方法:
n!=1×2×3×……×n
或
n!=n×(n-1)!
n的双阶乘:
当n为奇数时表示不大于n的所有奇数的乘积
如:7!!=1×3×5×7
当n为偶数时表示不大于n的所有偶数的乘积(除0外)
如:8!!=2×4×6×8
小于0的整数-n的阶乘表示:
(-n)!= 1 / (n+1)!
以下列出0至20的阶乘:
0!=1,注意(0的阶乘是存在的)
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5,040,
8!=40,320
9!=362,880
10!=3,628,800
11!=39,916,800
12!=479,001,600
13!=6,227,020,800
14!=87,178,291,200
15!=1,307,674,368,000
16!=20,922,789,888,000
17!=355,687,428,096,000
18!=6,402,373,705,728,000
19!=121,645,100,408,832,000
20!=2,432,902,008,176,640,000
另外,数学家定义,0!=1,所以0!=1!
★ 高二数学知识点归纳解读2021
★ 高中高二基础数学知识点总结2021
★ 高二年级数学重要知识难点大纲总结2021
★ 高二数学知识难点归纳大纲总结梳理2021
★ 广东全新高考高二数学知识点及公式2021
★ 高二年级数学知识点梳理2021
★ 2021高中数学最详细重点知识点全总结
★ 高中数学基本知识点归纳
★ 高二数学上册知识点内容掌握归纳2021
★ 2021高中数学的最详细重点知识点全总结
树图思维导图提供 高二重要数学公式总结 在线思维导图免费制作,点击“编辑”按钮,可对 高二重要数学公式总结 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:5a5ae1d14748fd5331c6c09135961829
树图思维导图提供 高中数学常用公式大全 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学常用公式大全 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:479437ba29b38f623c641501d2702237