小学6年级下册数学教案范文思维导图是指导教师进行教学设计的核心依据,教学目标包含使学生初步认识负数,知道正数和负数的读写法,体验数学和生活的联系,教学重点和难点分别是初步认识正数和负数和理解0既不是正数也不是负数,教学过程包含游戏导入和温度计实例,教师需要调动教育学、心理学和特殊教育学的理论为指导思想和理论依据。
小学6年级下册数学教案范文思维导图模板大纲
指导教师进行教学设计的核心依据。需要教师充分调动教育学、心理学以及特殊教育学的理论作为开展教学活动的指导思想和理论依据。今天树图网在这里整理了一些最新小学6年级下册数学教案范文,我们一起来看看吧!
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄式度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。
(2)上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。
(3)了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(出示网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(出示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
① 如果都同意分三类的,老师可以出难题:我觉得0可以分在它们一类啊,你们怎么来说服我?
② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1.练习一第2、3题
2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。
3.讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
教学反思:
教学内容:比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 -10 +5 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明"-8在-6的左边,所以-8〈-6"
5、再通过让另一学生比较"8〉6,但是-8〈-6",使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习1、练习一第4、5题。 2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
教学反思:
学习目标:
1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。
2.培养学生观察、分析、推理和概括的能力,指导并发展学生的有序思维。
3.培养学生自主参与的意识和主动探究的精神。
学习重点:理解比例的意义和基本性质。
学习难点:用比例的意义或性质判断两个比成不成比例。
学习准备:教学课件。
学习过程:
环节预设 教师活动 学生活动 设计意图
一、复习导入 1.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。 学生思考并回答问题 通过复习导入,将之前学过的知识和本节课所学知识联系起来。
二、合作探究 1.教学比例的意义。
(1)让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
①3:524:40
②:7.5:3
师问:比值相等,说明每组里两个比怎样?
说明3:5的比值和24:40的比值都是,比值相等,也就是两个比相等,可以写成:
3:5=24:40(板书)
这个式子表示两个比怎样?:和7.5:3也有怎样的关系?为什么?板书::=7.5:3这个式子也表示什么?谁来说一说,上面两个等式表示的是怎样的式子?指出:表示两个比相等的式子叫做比例。
(2)下面两个比之间的哪些○里能填"=",为什么?
1:2○3:60.5:0.2○5:2
1.5:3○15:3:2○:1
提问:填了等号后的式子是什么?1.5:3和15:3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
(3)出示教科书主题图。
师:同学们从画面中你们看到了什么?
生:我看到了谈判桌上的国旗长和宽分别为15厘米、10厘米;教室墙上悬挂的国旗长和宽分别为60厘米、40厘米;学校升旗仪式上使用的国旗长和宽分别为2.4厘米1.6厘米;-升旗仪式使用的国旗长和宽分别为5米、米。
师:这几面国旗的形状是一样的,但长和宽却各不相同,请同学们仔细观察,用心思考,也可以算一算,看看能发现什么?
学生独立思考。
(4)理解比例的意义。
师:请同学们写出每面国旗的长与宽的比。并动手计算每组比的比值。
根据求出的比值,你们发现了什么?
生:每组比的两个比的比值相等。
师:两个比的比值相等可以怎样表示呢?
生:用等号连接起来,表示等式。例如:2.4:1.6=60:40
师:像这样表示两个比相等的式子叫做比例(板书)
组织看书认识比例的各部分名称(自学第34页)
2.教学比例的基本性质。
(1)向学生说明比例各部分的名称。
让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
(2)判断能否组成比例。
出示"3.6:1.8和0.5:0.25"。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6:1.8和0.5:0.25能组成比例吗?指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。 学生讨论交流并回答问题。
梳理整合学生零散的发现,让学生的认知逐步深入清晰、完整。
三、巩固应用 1.提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?让学生自己总结出根据比例的意义判断能否组成比例;和根据比例的基本性质判断能否组成比例两种方法。
2.完成"做一做"。
指名4人板演,其余在下面练习。然后集体订正,让学生说说是怎样判断的,并说明可以用两个比是不是相等判断,也可以用比例的基本性质判断。
3.做练习八第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明"为什么"。
4.做练习八第2题。
让学生判断,在练习本上写出来。
学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。
四、课堂小结 通过今天的学习,你都有哪些收获呢?说一说学会了什么,自己表现怎么样。 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。
学习目标:
1.运用所学的圆、比例等知识解决问题。
2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。
4.经历解决问题的基本过程,了解数学与生活的密切关系。
学习重点:运用所学的比例或与其相关的知识解决自行车中的数学问题。
学习难点:运用所学的比例或与其相关的知识解决自行车中的数学问题。
学习准备:课件等。
学习过程:
环节预设 教师活动 学生活动 设计意图
一、情境导入 "你知道哪些自行车的种类?"
出示各种自行车的图片 学生积极思考、回答问题。 先给出学生一个熟悉的生活场景,便于学生理解。
二、新知讲授 (一)揭示课题
1.说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2.自行车里会有数学问题吗?想一想。
(二)研究普通自行车的速度与内在结构的关系
1.提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2.分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数
3.建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4.汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。
(三)研究变速自行车能组合出多少种速度
1.提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2.分析问题,求解,汇报。
3.蹬同样的圈数,哪种组合使自行车走得最远? 学生讨论交流并回答问题。
学生通过观察、思考、讨论、合作、解决问题等一系列学习过程,逐步培养自己的合作探索精神,更加善于在生活中进行学习。
动手操作的过程中,学生会逐渐融入到知识形成的整个过程当中去,培养学生解决实际问题的能力,了解数学与生活的密切关系。
三、巩固应用 1、已知:前齿轮齿数为:26,后齿轮齿数为:16,车轮直径为:66cm。问:①你能算出蹬一圈,它能走多远?②小红家距离学校大约500米,从家到学校至少要蹬多少圈?
共两题 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。
四、课堂小结
你有什么收获? 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)
二、实际应用
1、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
2、练习二第7题
(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)
(2)学生独立完成这道题,集体订正。
3、练习二第9题
(1)学生通过读题理解题意,思考"抹水泥的部分"是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
4、练习二第16题
(1)学生读题理解题意后尝试独立解题。
(2)集体评讲,让学生理解计算"制作中间的轴需要多大的硬纸板",就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
5、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。
三、布置作业
练习二第8、10、15、17、18及20题完成在作业本上。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(3)圆柱的体积
教学内容:P19-20页例5、例6及补充例题,完成"做一做"及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式"底面积×高",即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)
2、教学补充例题
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.
(4)做第20页的"做一做"。
学生独立做在练习本上,做完后集体订正.
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)
4、教学例6
(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)
三、巩固练习
1、做第21页练习三的第1题.
2、练习三的第2题.
这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。
四、布置作业
练习三第3、4题。
板书:
圆柱的体积=底面积×高 V=Sh或V=πr2h
例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
★ 小学六年级下册数学教案三篇2020
★ 6年级下册数学教案最新例文
★ 最新北师版小学数学六年级下册教案范文
★ 六年级数学下册全册教案最新模板
★ 2021北师大版小学六年级数学下册教案例文
★ 小学六年级上册数学教案范文三篇
★ 2021人教版数学六年级下册教案例文
★ 小学六年级上册数学优秀教案范文三篇
★ 六年级数学教案
★ 最新六年级数学下册教案青岛版例文
树图思维导图提供 人教版小学一年级数学下册范文教案 在线思维导图免费制作,点击“编辑”按钮,可对 人教版小学一年级数学下册范文教案 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:3d8a6a497b928f24746c9811f3491f81
树图思维导图提供 苏教版小学六年级下册数学教案范文 在线思维导图免费制作,点击“编辑”按钮,可对 苏教版小学六年级下册数学教案范文 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:fa2197c3fc70dbcb70020674ff18ecef