TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学七年级数学教案大全思维导图

七年级数学教案大全思维导图

  收藏
  分享
免费下载
免费使用文件
拾人心 浏览量:42023-04-04 21:33:29
已被使用0次
查看详情七年级数学教案大全思维导图

本模板主题为“七年级数学教案大全思维导图”,知识点包含:数学课件的重要性、三角形的分类和特征、思考同底数幂乘法的运算性质。第一篇篇一节三角形的课程,说明了学生在教师的引导下动手实践、积极思考,增强学习动力和信心,第二篇思维导图模板则讲述了同底数幂乘法的运算性质,通过幂的意义引导学生得出结论,以上是本模板的主要内容,希望对大家的工作和学习有所帮助。

思维导图大纲

七年级数学教案大全思维导图模板大纲

七年级数学教案大全(7篇)

数学课件是非常重要的。课文主要是让学生感受场景美,生活美,感知量词的用法,激发学生了解、观察大自然,并尝试用量词表达熟悉的事物。下面树图网给大家带来关于七年级数学教案大全,希望会对大家的工作与学习有所帮助。

七年级数学教案大全(精选篇1)

我上的"三角形"这节课,研究三角形按边的特征认识三角形并进行分类。整堂课的设计体现以教师为主导,学生为主体,使学生在教师的引导下动手操作,积极思考,与同学之间交流,展示自我的过程,是让学生用内心创造与体验学习数学。

教学三角形这节课,探究新知阶段我认为处理得比较好。我主要采用"实验操作法"。为使学生学会有目的、有规律地探究,采用"引——扶——放"教学手段,让学生在师生互动,生生互动,合作探究中体验感悟三角形围成的过程,并感受到学会用科学的数学思维进行有规律地探究,能围出尽可能多的不同种类的三角形,大大激发了学生的学习兴趣,培养了学生思维的有序性和探究能力。再通过小组讨论、交流、归纳出三角形按边分类及三角形按边特征命名,真正让学生动眼、动手、动口、动脑参与获取知识的过程,学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。

最后让学生在猜想中探究、生成。本节课中学生用三根小棒围出了尽可能多的不同种类的三角形,为防止知识的负迁移,我提出了猜想的话题:任意三根小棒都能围成三角形吗?然后让学生带着对问题结论的不同猜想和对正确结果的渴望,再次实验操作,得出不是任意三条边都能围成三角形的,催发学生生成了对三角形三边长度之间关系正确而又具有个性的认识,使学生意识到三角形中还藏着好多知识,正等待我们去探究。

存在的问题:交流的时间不充分,忽略未成功的学生及弱势群体学生按边分时,交流的时间少,特别是三种三角形之间的关系没有上学生先说一说,教师再作补充完善。

通过这节课的公开教学,加深了我对"教学有法,教无定法,贵在得法"这句话的理解:作为教师,应倾心于每一节课,每一篇教案,每一个教学环节…...

七年级数学教案大全(精选篇2)

本课的主要教学任务是"同底数幂乘法的运算性质":同底数幂相乘,底数不变,指数相加。

在课堂教学时,通过幂的意义引导学生得出这一性质,这一过程比较顺利,效果满意。学生在完成教材中的例题时,正确率较高。为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算进行辨析,学生基本上也能辨认清楚。至此,学生对于本节课的基本知识点已经掌握。在此基础上,我开始引导学生深入探讨同底数幂运算,幂的底数可以是"任意有理数、单项式、多项式",训练学生的整体思想,学生掌握情况良好。接着对于同底数幂乘法法则的逆运用进行探索,并应用到实际问题中:课堂教学环节,实施流畅,效果满意,但是在探索将不同底的幂转化成同底数幂进行计算时,感觉学生理解困难。

课后我分析造成这一结果的根源,觉得主要是因为:"课堂内容安排过多,学生练习不足,精力有限。"

这节课的主要任务就是一个运算性质,然学生理解很容易,但是要让学生能正确的进行计算以及解决实际问题,就会有很多问题。为了避免问题的发生,我在备课时就挖掘了很多教材上没有提及但是补充习题当中备受关注的题型。如最后的"探索将不同底的幂转化成同底数幂进行计算"。可是却事与愿违,由于大容量的课堂,造成教师讲解的过多,而学生自己练习的时间不足,面对运算性质,教师提点固然重要,但唯有自己多练,积累经验,才能提高运算能力。

在以后的教学中,首先在制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。其次在课堂教学中,立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。总之,一节课40分钟,不能求全、求难,而是要关注所有学生对基本知识的掌握情况,这样的教学才扎实,学生学得才牢靠。

七年级数学教案大全(精选篇3)

我校开展课堂教学改革到现在已有一段时间了,在这段时间内学校开展了一系列的教学研讨活动。每周都举行听评课活动,从这些活动中我感到受益匪浅。本周四,县教研室一行七人在教研室主任徐以山的带领下来我校进行了教学调研。县教研室主任徐以山作了有关小组合作学习的报告。听了徐主任的报告,有很多的感触,学到了很多。理论来自于实践,学到的东西更多的是需要运用到实践中去。

自我校开展课堂教学以来,我个人以为小组合作学习开展的还算可以。班内也分成了十个学习小组,每个小组的成员也都有了明确的分工。在教学过程中也试图多让学生参与到合作学习中去。把学生学习的主动权交还给学生了,让学生成为学习的主人。听了徐主任的报告后这才发现,这只是一种形式上的分组。与实际中的其他学校的教师还存在很大的差距。主要体现在小组的评建机制与措施不是很到位。其次,在课堂教学中只做到了学生之间的交流,对学生之间的互助做的还不够。学生之间没有很好的做到相互激励。

针对上面的一些问题,在今后的实际教学中我会继续努力,加强学习,不断的改进小组的后期建设,加强管理,争取学习和活动能有大的进步。

七年级数学教案大全(精选篇4)

《余角和补角》第2课时教案

教学目标:

知识与能力

能正确运用角度表示方向,并能熟练运算和角有关的问题。

过程与方法

能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

情感、态度、价值观

能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

教学重点:方位角的表示方法。

教学难点:方位角的准确表示。

教学准备:预习书上有关内容

预习导学:

如图所示,请说出四条射线所表示的方位角?

教学过程;

一、创设情景,谈话导入

在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

二、精讲点拔,质疑问难

方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如"北偏东30°","南偏西40°"等,方位角不能以正东,正西为基准,如不能说成"东偏北60°,西偏南50°"等,但有时如北偏东45°时,我们可以说成东北方向。

三、课堂活动,强化训练

例1如图:指出图中射线OA、OB所表示的方向。

(学生个别回答,学生点评)

例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

(小组讨论,个别回答,教师总结)

例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

(教师分析,一学生上黑板,学生点评)

四、延伸拓展,巩固内化

例4某哨兵上午8时测得一艘船的位置在哨所的.南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

(1)请按比例尺1:200000画出图形。

(独立完成,一同学上黑板,学生点评)

(2)通过测量计算,确定船航行的方向和进度。

(小组讨论,得出结论,代表发言)

五、布置作业、当堂反馈

练习:请使用量角器、刻度尺画出下列点的位置。

(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

(3)点C在点O的西北方向上,同时在点B的正北方向上。

作业:书P1407、9

七年级数学教案大全(精选篇5)

《等式与方程》教案

教学目标

1、学生掌握方程的定义以及等式与方程的区别;

2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。

教学重点

检验方程的解的方法

教学难点

区分等式与方程;等式与恒等式;恒等式与方程。

版面设计

方程与方程的解

一、等式与恒等式:

二、方程与整式方程:

三、方程的解与方程的根:

教学设计

一、复习引入:

⑴猜年龄:

将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。

⑵找规律:

如果设小明的年龄为x岁,那么乘以2再减去5就是2x-5,所以得到方程(equation):2x-5=21

二、新课传授:

1.等式与恒等式:

①等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号=来表示相等关系的式子,叫做等式。

等式左边的式子叫做等式的左边;

等式右边的式子叫做等式的右边;

等式的一般形式是:A=B

②恒等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。

2.方程与整式方程:

①方程:

这种含有未知数的等式叫做方程。

②整式方程:

方程的两边都是整式时,称为整式方程。

【练习】:课后1、2两题(指定学生口答)

1.方程的解与方程的根:

①方程的解:

能使方程左、右两边的值相等的未知数的值叫做方程的解;

②一元方程:

只含有一个未知数的方程称为一元方程;

一元方程的解也叫做方程的根。

2.一元一次方程:

只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。

例检验下列各数是不是方程7x+1=10-2x的解:

⑴x=1;⑵x=-2。

解:⑴将x=1分别代入方程的左、右两边,得

左边=71+1=8,

右边=10-21=8,

∵左边=右边,

x=1是方程7x+1=10-2x的解。

⑵将x=-2分别代入方程的左、右两边,得

左边=7(-2)+1=-13,

右边=10-2(-2)=14,

∵左边右边,

x=-2不是方程7x+1=10-2x的解。

三、作业:

课后习题

同步练习

七年级数学教案大全(精选篇6)

《整式的加减》教案

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题:

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t—120(t-0.5)千米②上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

七年级数学教案大全(精选篇7)

教学目标1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点两个负数大小的比较

知识重点绝对值的概念

教学过程(师生活动)设计理念

设置情境

引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反

意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负

数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体

验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型

模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对

有什么规律?、

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.求一个数的绝时值的法则,可看做是绝对值概

念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形.让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

课堂练习例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10

2,选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在

这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学

习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意

义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理

数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,

学生不易接受.

2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学

中要结合绝对值的意义和规定:"在数轴上表示有理数,它们从左到右的顺序就是从小到

大的顺序",帮助学生建立"数轴上越左边的点到原点的距离越大,所以表示的数越小"这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教

学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

相关思维导图模板

初中数学优秀教案大全思维导图

树图思维导图提供 初中数学优秀教案大全 在线思维导图免费制作,点击“编辑”按钮,可对 初中数学优秀教案大全  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:551ee80b2009950fd7c88f5eadc7a61d