TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学余角补角对顶角苏教版数学初一上册教案思维导图

余角补角对顶角苏教版数学初一上册教案思维导图

  收藏
  分享
免费下载
免费使用文件
回憶褶皺 浏览量:42023-04-04 21:37:52
已被使用0次
查看详情余角补角对顶角苏教版数学初一上册教案思维导图

关于余角、补角、对顶角的概念其性质和应用,给出了多个例题,并提供了用方程思想解题的方法,帮助初一学生更好的理解和掌握这些知识点,提高数学解题能力。知识点包含余角、补角、邻补角、对顶角概念和其性质,如同角的余角相等、补角相等,本模板的教案思维导图也可以供初一数学教师参考使用。

思维导图大纲

余角补角对顶角苏教版数学初一上册教案思维导图模板大纲

余角,如果两个角的和是直角(90°),那么称这两个角"互为余角"。对顶角是两个角之间的一种位置关系。以下是树图网整理的余角补角对顶角苏教版数学初一上册教案,欢迎大家借鉴与参考!

余角、补角、对顶角:教案

学习目标

1.在具体情境中了解对顶角,知道对顶角相等;

2.经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;

3.会运用互为余角、互为补角、对顶角的性质来解决问题.

一、知识梳理

1、余角概念:

如果两个角的和是90°,那么这两个角互为余角,简称互余.

2、补角概念:

如果两个角的和是180°,那么这两个角互为补角,简称互补.

3、注意点:

互为余角、互为补角仅仅表明了两个角的数量关系,并没有限制角的位置关系.

4、邻补角概念:

两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.

5、同一个角的补角与余角的关系:

同一个角的补角比它的余角大 90°.

6、余角补角的性质:

同角的余角相等,同角的补角相等.

等角的余角相等,等角的补角相等.

7、对顶角概念:

一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角.(对顶角由两条相交直线产生)

8、对顶角相等.

9、数对顶角的对数:

二、典型例题

例1:判断正误:

(1)一个角一定小于它的余角,也小于它的补角.

(2)如果两个角互补,那么这两个角是锐角和钝角.

(3)如果三个角的和为180°,则这三个角互补.

(4)如果两个角相等,那么她们的补角也相等.

(5)若∠1=∠2,则∠1和∠2是对顶角.

(6)互补的角就是平角.

(7)互余的两个角一定都是锐角.

(8)不相等的两个角不是对顶角.

解析:

(1)错误,如60°大于它的余角30°,100°大于它的补角80°.

(2)错误,两个角可以都为直角.

(3)错误,互补是两个角之间的数量关系.

(4)正确.

(5)错误,比如一个角的角平分线,把这个角分成2个相等的小角不是对顶角.

(6)错误,两个互补的角的度数之和是平角的度数.

(7)正确.

(8)正确.

例2

解析:

例3:

一个角的余角比它的补角的一半还少20°,这个角的度数为______°.

分析:

这种题目难度不大,可以直接解设这个角的度数为x,表示出这个角的余角和补角,根据题目,列出方程.

当然本题还有一种做法,即设这个角的补角度数为x,表示出这个角的余角,同时,还要利用一个隐含的数量关系,同一个角的补角比它的余角大 90°.

解答:

三、思维提升

1、找余角补角

例1:

如图,O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?

分析:

找互余的角,首先要找直角内部的射线将直角分成的2个角,或者可以形象的称为"邻余角".

其次,再找有没有其他角和"邻余角"中的一个相等,则和另一个也互余.

找互补的角,首先找找有没有邻补角.再找有没有其他角和邻补角中的一个相等.

这里∠DOE相邻的余角有2个,∠EOF,∠DOB,再找找有没有和这两个角相等的角.

∠DOE在图中没有邻补角,因此,只能找和它相等的角,不难发现是∠AOF,找∠AOF的邻补角,再找和∠AOF的邻补角相等的角.

解答:

∵∠AOE=∠FOD=90°,∴∠BOE=90°

∠3+∠4=90°,∠3+∠2=90°,

∴∠2=∠4,

∵OB平分∠COD,

∴∠4=∠5,∠2=∠5,

∴∠DOE互余的是∠2、∠4、∠5;

∵∠1+∠2=90°,∠3+∠2=90°,

∴∠3=∠1

∵∠1+∠BOF=180°,

∠BOF=∠2+∠3+∠4=∠5+∠3+∠4=∠EOC,

∴与∠DOE互补的角是∠BOF、∠EOC.

1、找余角补角

例2:

如下图,AOE是一条直线,从点O引射线OB,OC,OD,若∠AOC=∠COE=∠BOD=90°,那么图中互余的角有哪几对?互补的角有哪几对?

分析:

思路与例1一致,先找位置相邻的余角,找邻补角,然后找有没有其他角与其中一个相等的角,对于两个直角,也别忘了它们互补.

解答:

∵∠AOC=∠COE=∠BOD=90°

∴∠1+∠2=90°

∠2+∠3=90°,

∠3+∠4=90°,

∠1+∠4=90°,

互余的角有4对,

∠1与∠2,∠2与∠3,∠3与∠4,∠1与∠4,

∴∠1=∠3,∠2=∠4

∵∠1+∠DOE=180°,∴∠3+∠DOE=180°,

∠4+∠AOB=180°,∴∠2+∠AOB=180°,

∠AOC+∠COE=180°,

∠AOC+∠DOB=180°,

∠DOB+∠COE=180°,

互补的角有7对,

∠1与∠DOE,∠3与∠DOE,

∠4与∠AOB,∠2与∠AOB,

∠AOC与∠COE,

∠AOC与∠DOB,

∠DOB与∠COE.

1、找余角补角

例3:

如图,直线 AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线,

(1)写出∠DOE的补角;

(2)要若∠BOE=62°,求∠AOD和∠EOF的度数;

(3)求∠DOF的度数?

分析:

(1)要找∠DOE的补角,可以找它的邻补角,也可以找与∠DOE相等的角,再找出它的补角.

(2)要求∠AOD,不一定非要用角度之和,可以用180°减去∠BOD,要求∠EOF,可以求∠AOE,再求其一半.

(3)双角平分线问题,找到出现两次的边OE,则∠DOF看作∠FOE+∠DOE,利用一半加一半可求.

解答:

2、用方程思想

例1:

如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.∠BOF=30°,则∠AOC=______°.

分析:

要求∠AOC,其实就是求∠BOD.要求∠BOD,根据角平分线条件,可设∠EOD为x.,然后表示出∠EOF,进而表示出∠COE,则∠COE+∠EOD=180°,作为方程的相等关系.

解答:

∵OE平分∠BOD,∴∠BOD=2∠BOE,

∵OF平分∠COE,∴∠COF=∠FOE,

∴设∠BOE=x°,则∠BOD=2x°,

∵直线AB、CD相交于点O,

∴∠AOC=∠BOD=2x°,∠EOF=∠COF=(x+30)°,

则∠COF+∠EOF+∠DOE=2(x+30)+30=180,

解得:x=40,

故∠AOC=80°.

2、用方程思想

例2:

如图,直线AB、CD、EF相交于点O,∠AOD=∠BOD,且∠DOF与∠BOF的度数之比为3:1,求∠COE的度数.

分析:

要求∠COE,其实就是求∠FOD.而∠DOF与∠BOD的度数比已知,则可以设x,利用它们的差是∠BOD求解,而∠AOD=∠BOD,它们又是邻补角,则∠BOD的度数很快可知.

解答:

解设∠BOF=x°,∠DOF=3x°

∴∠BOD=∠DOF-∠BOF=2x°

∵∠AOD=∠BOD,∠AOD+∠BOD=180°,

∴∠BOD=90°,

2x=90,x=45

∠DOF=135°.

《余角、补角、对顶角》同步测试

1. 如果一个角是36°,那么()

A.它的余角是64° B.它的补角是64°

C.它的余角是144° D.它的补角是144°

2.现有下列说法:①锐角的余角是锐角;②钝角没有余角;③直角的补角是直角;④两个锐角互余.其中正确说法的个数是()

A.4 B.3 C.2 D.1

《余角、补角、对顶角》测试

1.一个角是36°,则它的余角是_______,它的补角是_______.

2.∠A=50°17',则它的余角等于_______;∠B的补角是102°38'1',则∠B=_______.

3.已知∠α与∠β互余,且∠α=40°,则∠β的补角为_______度.

4.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角是_______.

5.如图,点O在直线PQ上,OA是∠QOB的平分线,OC是∠POB的平分线,那么下列说法错误的是 ( )

A.∠AOB与∠POC互余

B.∠POC与∠QOA互余

C.∠POC与∠QOB互补

D.∠AOP与∠AOB互补

6.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角 ( )

A.等于45°

B.小于45°

C.小于或等于45°

D.大于或等于45°

7.判断:

(1) 90°的角叫余角,180°的角叫补角. ( )

(2)如果∠1+∠2+∠3=180°,那么∠1、∠2与∠3互补. ( )

(3)如果两个角相等,则它们的补角相等.( )

(4)如果∠α>∠β,那么∠α的补角比∠β的补角大. ( )

余角补角对顶角苏教版数学初一上册教案相关文章:

★ 最新苏教版初一数学上册教案模板

★ 七年级数学教案

★ 最新初一数学课题完整教案文案

★ 初一上册数学全册教案2021最新

★ 2021初一上学期数学教案模板

★ 初一数学上册教学计划方案5篇

★ 最新数学初一教案模板

★ 2021初一趣味数学教案范文

★ 2021最新初一数学书上册教案

★ 2021最新初一上册数学教案表格

相关思维导图模板

鄂尔多斯市校园安全网格化管理清单 思维导图

树图思维导图提供 鄂尔多斯市校园安全网格化管理清单 在线思维导图免费制作,点击“编辑”按钮,可对 鄂尔多斯市校园安全网格化管理清单   进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:b0ff1d16fc853ad7fd07941a4952693d

高等数学知识点思维导图

树图思维导图提供 高等数学知识点 在线思维导图免费制作,点击“编辑”按钮,可对 高等数学知识点  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:9b4c755584cd33ead3f894e2eb35a493