青岛初一数学教案思维导图作为现代教学思路的基本着眼点,教师在教学过程中应如何促进学生的发展及培养学生的能力呢?本模板整理了2021青岛初一数学教案模板,包含教学目标、重点与难点、教学过程。其中重点提到了借助数轴,初步理解绝对值的概念,掌握绝对值的求法和使用绝对值比较两个负数的大小,本模板还说明通过交流、讨论和实践方式培养学生的实践能力、创新意识、自信心和合作学习。
青岛初一数学教案模板思维导图模板大纲
在教学过程中如何促进学生的发展,培养学生的能力,是现代教学思路的一个基本着眼点。今天树图网在这里整理了一些2021青岛初一数学教案模板,我们一起来看看吧!
一、教学目标
1、知识与技能 (1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。 (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。 2、过程与方法目标: (1)、通过运用"| |"来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的 (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对"做一做""议一议" "试一试"的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成"脑中有图,心中有数"的数形结合思想。通过"做一做"议一议""试一试"问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟) 2.在组长的组织下进行讨论、交流。(约5分钟) 3、小组分任务展示。(约25分钟) 4、达标检测。(约5分钟) 5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?
(二) 小组合作交流,探究新知
1、观察下图,回答问题: (五组完成)
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的 。一个数a的绝对值记作: .
4的绝对值记作 ,它表示在 上 与 的距离, 所以| 4|= 。
2、做一做:
(1)、求下列各数的绝对值:(四组完成) -1.5, 0, -7, 2 (2)、求下列各组数的绝对值:(一组完成)
(1)4,-4; (2) 0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:(八组完成)
(1)|+2|= ,
1= ,|+8.2|= ; 5(2)|-3|= ,|-0.2|= ,|-8|= . (3)|0|= ;
你能从中发现什么规律?
小结:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是 。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子 ,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、( 1 )在数轴上表示下列各数,并比较它们的大小:
- 3 , - 1
( 2 ) 求出(1)中各数的绝对值,并比较它们的大小
( 3 )你发现了什么?
2、比较下列每组数的大小。
(1) -1和 – 5;(五组完成) (2) ?
(3) -8和 -3(七组完成)
5和- 2.7(六组完成) 6五、达标检测:
1:填空:
绝对值是10的数有( )
|+15|=( ) |–4|=( )
| 0 |=( ) | 4 |=( ) 2:判断 (1)、绝对值最小的数是0。( ) (2)、一个数的绝对值一定是正数。( ) (3)、一个数的绝对值不可能是负数。( )
(4)、互为相反数的两个数,它们的绝对值一定相等。( ) (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )
六、总结:
1绝对值 :在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数; 0 的绝对值是 0.
因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小: 两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题.
一、学习与导学目标:
知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)
2、尝试回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻灯片)
思考:你能从中发现什么规律?引导学生得出:(幻灯片)
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
当a=0时,︱a︱=0。
解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。
显然,结合问题的实际意义不难得到:-4<-3<-2<-1<0<1<2……。
因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:P17例,P18练习。
5、师生小结归纳(幻灯片)
三、笔记与板书提纲:
1、 幻灯片
2、 师生板演练习P15/1
四、练习与拓展选题:
P19/4,5,9,10
教学目标:
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:负数的引入.
教与学互动设计:
(一)创设情境,导入新课
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究
举出一些生活中常遇到的具有相反意义的量,如温度是零上7 ℃和零下5 ℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上"-"(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加"-"号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有"上升"与"下降","前"与"后"、"高于"与"低于"、"得到"与"失去"、"收入"与"支出"等.
【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02 g,记作+0.02 g,那么-0.03 g表示什么?
【例3】 某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()
A.3B.-3C.-2.5D.-7.45
【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.
(四)总结反思,拓展升华
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上"-"号就是负数,不能说"有正号的数是正数,有负号的数是负数".另外,0既不是正数,也不是负数.
1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为"+"):
星期 日 一 二 三 四 五 六
(元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来相比是多了还是少了?
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用"+"表示"站","-"(负号)表示"蹲".
(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的"惩罚";
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.
(五)课堂跟踪反馈
夯实基础
1.填空题:
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4年,那么8年前记作年.
(3)如果运出货物7吨记作-7吨,那么+100吨表示.
(4)一年内,小亮体重增加了3 kg,记作+3 kg;小阳体重减少了2 kg,则小阳增加了 .
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.
(1)用正数或负数记录下午1时和下午5时的水位;
(2)下午5时的水位比中午12时水位高多少?
提升能力
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
(六)课时小结
1.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)
教学目标:
1.通过对"零"的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
教学重点:深化对正负数概念的理解.
教学难点:正确理解和表示向指定方向变化的量.
教与学互动设计:
(一)知识回顾和理解
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
[问题1]:"零"为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:用正数、负数和零表示零上温度、零下温度和零度.
思考"0"在实际问题中有什么意义?
归纳"0"在实际问题中不仅表示"没有"的意思,它还具有一定的实际意义.
如:水位不升不降时的水位变化,记作:0 m.
[问题2]:引入负数后,数按照"具有两种相反意义的量"来分,可以分成几类?分别是什么?
(二)深化理解,解决问题
[问题3]:(课本P3例题)
【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
巩固练习
1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:
中国减少866,印度增长72,
韩国减少130,新西兰增长434,
泰国减少3247, 孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
阅读与思考
(课本P6)用正数和负数表示加工允许误差.
问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.
(三)应用迁移,巩固提高
1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.
2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?
3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:
星期 一 二 三 四
增减 -5 +7 -3 +4
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
类比例题,要求学生注意书写格式,体会正负数的应用.
(四)课时小结(师生共同完成)
教学目标:
1.理解有理数的意义.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
教学重点:会把所给的各数填入它所在的数集图里.
教学难点:掌握有理数的两种分类.
教与学互动设计:
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.
说明我们把所有的这些数统称为有理数.
试一试你能对以上各种类型的数作出一张分类表吗?
有理数
做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数
数的集合
把所有正数组成的集合,叫做正数集合.
试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
(三)应用迁移,巩固提高
【例1】 把下列各数填入相应的集合内:
,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?
有理数有理数
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意"0"的正确说法.
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整数集合{};
(2)分数集合{};
(3)负分数集合{ };
(4)非负数集合{ };
(5)有理数集合{ }.
2.下列说法中正确的是()
A.整数就是自然数
B. 0不是自然数
C.正数和负数统称为有理数
D. 0是整数,而不是正数
提升能力
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
★ 最新数学初一教案模板
★ 最新山东初一数学教案文案
★ 最新数学七年级上教案模板
★ 2021数学教案初一教案模板
★ 初一数学老师教学设计个人方案5篇
★ 初中数学人教版教案范文五篇
★ 初中七年级上学期模板教案设计五篇
★ 初中数学教案教学设计范文模板2021
★ 最新数学七年级上册21教案范文
★ 初中数学教学设计教案模板范文最新2021
树图思维导图提供 青岛版七年级上册数学教案模板 在线思维导图免费制作,点击“编辑”按钮,可对 青岛版七年级上册数学教案模板 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:576bdb5650d33dc29f40f6dbebba7a31
树图思维导图提供 初一数学上教案模板 在线思维导图免费制作,点击“编辑”按钮,可对 初一数学上教案模板 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:655a1d1e9d341e91a1091f39ffec18d0