TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学人教版七年级下册数学第八章教案范文思维导图

人教版七年级下册数学第八章教案范文思维导图

  收藏
  分享
会员免费下载30积分
会员免费使用30积分
清水入喉 浏览量:22023-04-04 21:59:37
已被使用0次
查看详情人教版七年级下册数学第八章教案范文思维导图

本模板是关于人教版七年级下册数学第八章教案范文思维导图的知识点提取,说明了教学设计能够促使教师理性思考教学,提高教学元认知能力,实现教师与学生双发展的目标。知识点包含:掌握相反数的概念,理解数轴上的点与数的对应关系,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力,体验数形结合的思想,深化相反数的概念,包含互为相反数的数在数轴上表示的点的几何意义,和如何求一个数的相反数和表示一个数的相反数。教学设计体现了新课标的教学理念,注重学生的自主学习、自主思考、观察归纳,并给学生留有发挥的余地,加深对相反数概念的理解。

思维导图大纲

人教版七年级下册数学第八章教案范文思维导图模板大纲

教学设计,首先能够促使教师去理性地思考教学,同时在教学元认知能力上有所提高,只有这样,才能够真正体现教师与学生双发展的教育目的。今天树图网在这里整理了一些2021人教版七年级下册数学第八章教案范文,我们一起来看看吧!

2021人教版七年级下册数学第八章教案范文1

相反数

教学目标 1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3, 体验数形结合的思想。

教学难点 归纳相反数在数轴上表示的点的特征

知识重点 相反数的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类

4, -2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。 以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义 给出相反数的定义

问题2:你怎样理解相反数定义中的"只有符号不同"和"互为"一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习 体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;"零的相反数是零"是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结 1, 相反数的定义

2, 互为相反数的数在数轴上表示的点的特征

3, 怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业 1, 必做题 教科书第18页习题1.2第3题

2, 选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

2021人教版七年级下册数学第八章教案范文2

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有"一"时叫做负数。根据需要有时在正数前面也加上"十"(正号)表示正数。

举例说明:3、2、0.5、 等是正数(也可加上"十")

-3、-2、-0.5、- 等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示"没有"。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思

2021人教版七年级下册数学第八章教案范文3

教学目的:

(一)知识点目标:

1.了解正数和负数在实际生活中的应用。

2.深刻理解正数和负数是反映客观世界中具有相反意义的理。

3.进一步理解0的特殊意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。

2.熟练地用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:能用正、负数表示具有相反意义的量。

教学难点:进一步理解负数、数0表示的量的意义。

教学方法:小组合作、师生互动。

教学过程:

创设问题情境,引入新课:分小组派代表,注意数学语言规范。

1.认真想一想,你能用学过的知识解决下列问题吗?

某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。

2.下列说法中正确的( )

A、带有"一"的数是负数; B、0℃表示没有温度;

C、0既可以看作是正数,也可以看作是负数。

D、0既不是正数,也不是负数。

[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。

讲授新课:

例1. 仔细找一找,找了具有相反意义的量:

甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。

例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;

(2)2001年下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,法国减少2.4%,

英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家2001年商品进出口总额的增长率。

例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?

例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?

复习巩固:练习:课本P6 练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1 的第3、6、7、8题。

活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?

课后反思:————

2021人教版七年级下册数学第八章教案范文4

教学目标: 1、使学生在现实情境中理解有理数加法的意义

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则

重点:异号两数相加的法则

教学过程:

二、讲授新课

1、同号两数相加的法则

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识

课本P18 例1,例2、课本P118 练习1、2题

四、总结

运算的关键:先分类,再按法则运算;

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业

课本P24习题1.3第1、7题。

2021人教版七年级下册数学第八章教案范文5

【学习目标】

1.让学生经历有理数大小比较法则的获得过程,帮助学生积累教学活动经验.

2.掌握有理数大小的比较法则,会用法则进行有理数大小的比较.

【学习重点】

利用数轴比较两个有理数的大小,利用绝对值比较两个负数的大小.

【学习难点】

两个负数大小的比较.

行为提示:创景设疑,帮助学生知道本节课学什么.

行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.

教会学生落实重点.

情景导入生成问题

旧知回顾:

1.什么是绝对值?

答:在数轴上,表示数a的点到原点的距离叫做数a的绝对值.

2.正数、负数、0的绝对值分别是什么?

答:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

自学互研生成能力

知识模块一用数轴比较有理数的大小

阅读教材P14~P15的内容,回答下列问题:

问题:如何用数轴比较数的大小?正数与负数比较谁大?0与负数比较哪个大?

答:数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.正数大于0,0大于负数,正数大于负数.

方法指导:引导学生学会在数轴上比较数的大小,体会右边的数总比左边大.

学习笔记:

行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.典例:如图所示,根据有理数a、b、c在数轴上的位置,比较a、b、c的大小关系正确的是(A)

A.a>b>cB.a>c>b

C.b>c>a D.c>b>a

仿例1:数a在数轴上对应的点如图所示,则a、-a、-1的大小关系是(C)

A.-aC.a<-1<-a D.a<-a<-1

仿例2:把下列各数在数轴上表示出来,并用"<"连接各数.

-1.5,-0.5,-3.5,-5.

解:将这些数在数轴上表示出来,如图:

从数轴上可看出:-5<-3.5<-1.5<-0.5.

知识模块二用法则比较有理数的大小

阅读教材P15的内容,回答下列问题:

问题:两个负数怎样比较大小?

答:可在数轴上比较,也可根据"两个负数比较大小,绝对值大的反而小"来比较.

典例:比较大小:

(1)-2.1<1;(2)-3.2>-4.3;

(3)-12<13; (4)-14<0.

仿例1:比较-12、-13、14的大小结果正确的是(A)

A.-12<-13<14B.-12<14<-13

C.14<-13<-12 D.-13<-12<14

仿例2:比较下列各对数的大小:

(1)-(-3)与|-2|;

解:∵-(-3)=3,|-2|=2,

∴-(-3)>|-2|;(2)-(-6)与|-6|.

解:∵-(-6)=6,|-6|=6,

∴-(-6)=|-6|.

变例:整数x满足|x|<3,则x=-2、-1、0、1、2,负整数x满足3<|x|≤6,则x=-4、-5、-6.

交流展示生成新知

1.将阅读教材时"生成的问题"和通过"自学互研"得出的"结论"展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再小组间就上述疑难问题相互释疑.

2.各小组由组长统一分配展示任务,由代表将"问题和结论"展示在黑板上,通过交流"生成新知".

知识模块一用数轴比较有理数的大小

知识模块二用法则比较有理数的大小

检测反馈达成目标

【当堂检测】见所赠光盘和学生用书

【课后检测】见学生用书

课后反思查漏补缺

1.收获:________________________________________________________________________

2.困惑:________________________________________________________________________

人教版七年级下册数学第八章教案范文相关文章:

★ 新人教版七年级下册数学教案最新文案

★ 初中数学人教版教案范文五篇

★ 人教版初中数学教师教案五篇

★ 最新2021人教版七年级数学下册教案

★ 人教版七年级语文教案下册新编汇集范文五篇

★ 浙教版七年级下册数学教案最新例文

★ 初中数学教案教学设计范文模板2021

★ 最新数学七年级上册教案人教版例文

★ 新人教版七年级数学上册全册教案最新模板

★ 人教版七年级下册历史教案范文大全

相关思维导图模板

七年级下册数学教案范文思维导图

树图思维导图提供 七年级下册数学教案范文 在线思维导图免费制作,点击“编辑”按钮,可对 七年级下册数学教案范文  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:96d4ff3f10e889e1ea5da8ed1fd82f66

二元一次方程人教版数学七年级下册教案思维导图

树图思维导图提供 二元一次方程人教版数学七年级下册教案 在线思维导图免费制作,点击“编辑”按钮,可对 二元一次方程人教版数学七年级下册教案  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:bccd047f39b46329fda710eb64a9f876