高二数学备考:数学解题思想之待定系数法思维导图待定系数法的关键在于正确列出等式或方程,使用一组含有待定系数的方程来解决问题。待定系数法可以用于分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程,使用待定系数法的基本步骤包含确定所求问题含有待定系数的解析式、根据恒等条件列出一组含待定系数的方程,解方程组或消去待定系数以解决问题。在列出一组含待定系数的方程时,可以利用对应系数相等、恒等的概念用数值代入法、定义本身的属性和几何条件。举例来说,在求圆锥曲线的方程时,可以用待定系数法求解,先设定方程的形式,在将几何条件转化为含有未知系数的方程或方程组,最后解方程或方程组求出未知系数,并代入已明确的方程形式得到所求圆锥曲线的方程。
高二数学备考:数学解题思想之待定系数法思维导图模板大纲
高二数学解题思想之待定系数法
要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
使用待定系数法,它解题的基本步骤是:
第一步,确定所求问题含有待定系数的解析式;
第二步,根据恒等的条件,列出一组含待定系数的方程;
第三步,解方程组或者消去待定系数,从而使问题得到解决。
如何列出一组含待定系数的方程,主要从以下几方面着手分析:
利用对应系数相等列方程;
由恒等的概念用数值代入法列方程;
利用定义本身的属性列方程;
利用几何条件列方程。
比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。
树图思维导图提供 高中数学本学期教学工作总结 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学本学期教学工作总结 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:7cfa01c7af0b0e7f89d7136dcd8c95e8