高一数学一般学的是必修一,在这本教材中的难点、考点主要是函数、集合的相关知识点,如函数的值域、函数的表达式等。
树图思维导图提供 高一数学函数知识点归纳 在线思维导图免费制作,点击“编辑”按钮,可对 高一数学函数知识点归纳 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:98f518b376e927a176714fde485c7382
高一数学函数知识点归纳思维导图模板大纲
2023高一数学函数知识点归纳
高一数学一般学的是必修一,在这本教材中的难点、考点主要是函数、集合的相关知识点,如函数的值域、函数的表达式等。以下是关于高一数学函数知识点归纳的相关内容,供大家参考!
1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:
⑴ 若x处于分母位置,则分母x不能为0。
⑵ 偶次方根的被开方数不小于0。
⑶ 对数式的真数必须大于0。
⑷ 指数对数式的底,不得为1,且必须大于0。
⑸ 指数为0时,底数不得为0。
⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。
⑺ 实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数
⑴ 表达式相同:与表示自变量和函数值的字母无关。
⑵ 定义域一致,对应法则一致。
4、函数值域的求法
⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。
⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。
⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。
⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换
⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。
⑵ 伸缩变换:在x前加上系数。
⑶ 对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。
⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。
⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。
⑶ 不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数
⑴ 在定义域的不同部分上有不同的解析式表达式。
⑵ 各部分自变量和函数值的取值范围不同。
⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。
1、函数的局部性质——单调性
设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间d上是增函数,d是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)="">f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。
ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为"同增异减";多个函数的复合函数,根据原则"减偶则增,减奇则减"。
⑶注意事项
函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。
2、函数的整体性质——奇偶性
对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;
对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。
⑴奇函数和偶函数的性质
ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。
ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
⑵函数奇偶性判断思路
ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。
ⅱ确定f(x) 和f(-x)的关系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。
3、函数的最值问题
⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。
⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。
⑶关于二次函数在闭区间的最值问题
ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。
ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。
ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性
若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);
若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。
1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数
注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:
a>1时,最小值f(a),最大值f(b);0<a<1时,最小值f(b),最大值f(a)。< p="">
⑵ 对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。
2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数
3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。
⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。
⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。
⑶a<0时,幂函数在(0,+∞)区间为减函数。
当x从右侧无限接近原点时,图像无限接近y轴正半轴;
当y无限接近正无穷时,图像无限接近x轴正半轴。
幂函数总图见下页。
4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。
反函数图像与原函数图像关于直线y=x对称。
1.先看笔记后做作业。有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2.做题之后加强反思。学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日久天长,构建起一个内容与方法的科学的网络系统。俗话说:"有钱难买回头看"。我们认为,做完作业,回头细看,价值极大。这个回头看,是学习过程中很重要的一个环节。要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。用专业的语言说,就是提高了学生的数学化能力,使其运用知识,解决问题的能力能够远距离迁移。
3.重视改错错不重犯。一定要重视改错工作,做到错不再犯。初中数学教学采取的方法是,把各种可能的错误,都告诉学生注意,只要有一人出过错,就要提出来,让全体同学引为借鉴。这叫"一人有病,全体吃药。"高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能"谁有病,谁吃药"。如果学生"有病",而自己却又忘记吃药,那么没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患,一处"地雷",迟早要惹祸。有的学生认为,自己考试成绩上不去,是因为自己做题太粗心。而且,自己特爱粗心。其实,原因并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往右踩,是踩油门。其机械原理,设计原因,操作规程都可以讲的清清楚楚。如果新司机真正掌握了这一套,请问,可以同意他开车上街吗?恐怕他自己也知道自己还缺乏练习。一两次能正确地完成任务,并不能说明永远不出错。练习的数量不够,往往是学生出错的真正原因。大家一定要看到,如果,自己的基础背景是地雷密布,隐患无穷,那么,今后的数学将是难以学好的。
1、结合函数和集合相关的考点
必修一数学的核心其实是函数,围绕函数进行考核的肯定是集合,单独的集合知识点不难,大家都能学好,但是结合函数进行集合的考核就是高一新生的难点,建议大家多进行相关的考点的练习,熟能生巧。
2、函数的值域
函数求值域是历届高中生的难点,大家一定要高度重视函数的值域相关的考点,如果学到函数的值域要格外下功夫,后续课程我们也将结合具体的习题为大家进行相关的内容的详解。
3、抽象函数的表达式
抽象函数的表达式也是必修一重点乃至难点,很多时候,函数的表达式会以求函数值的形式进行考核,会结合函数的对称性,奇偶性周期性等综合考点进行考核,很多学生就会在这里被难倒,建议大家从基本考点下手,每个考点都拿下后再进行综合习题的练习。