TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育其他学科数学高考知识点归纳总结思维导图

数学高考知识点归纳总结思维导图

  收藏
  分享
免费下载
免费使用文件
自我孤立 浏览量:12023-04-24 11:16:48
已被使用0次
查看详情数学高考知识点归纳总结思维导图

偏导数、全导数和不等式的基本性质,偏导数是多变量函数关于其中一个变量的导数,全导数是二元函数关于自变量的复合函数的导数,不等式的基本性质包含对称性、传递性、加法单调性,这些性质都是用来描述不等式的数学式子。数学高考的知识点归纳总结思维导图为我们提供了一种整理和梳理数学知识的方法,希望对大家有所帮助!

思维导图大纲

数学高考知识点归纳总结思维导图模板大纲

2023数学高考知识点归纳总结

有很多的同学是非常想知道,关于高三年级的数学知识点难点有哪些,下面小编为大家带来数学高考知识点归纳总结,欢迎大家参考阅读,希望能够帮助到大家!

数学高考知识点归纳总结

1、偏导数

在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。

在一元函数中,导数就是函数的变化率。对于二元函数研究它的"变化率",由于自变量多了一个,情况就要复杂的多。

在xOy平面内,当动点由P(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来是不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。

在这里我们只学习函数f(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时,f(x,y)的变化率。

偏导数的表示符号为?。

偏导数反映的是函数沿坐标轴正方向的变化率。

2、全导数

已知二元函数z=f(u,v),其中u、v是关于x的一元函数,有u=u(x)、v=v(x),u、v作为中间变量构成自变量x的复合函数z,它最终是一个一元函数,它的导数就称为全导数。

全导数的出现可以作为一类导数概念的补充,其中渗透着整合全部变量的思想。

对全导数的计算主要包括:

型锁链法则、二一型锁链法则、三一型锁链法则,其中二一型锁链法则最为重要,并且可以将二一型锁链法则推广到更加一般的情况n一型锁链法则。

数学高考知识点梳理

不等式的基本性质

不等式的性质有:对称性;传递性;加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。

不等式的性质另一种表达方式:

1、如果x>y,那么yy;(对称性)

2、如果x>y,y>z;那么x>z;(传递性)

3、如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;

4、如果x>y,z>0,那么xz>yz,即不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;

5、如果x>y,z<0,那么xz

6、如果x>y,m>n,那么x+m>y+n;

7、如果x>y>0,m>n>0,那么xm>yn;

8、如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂。

数学高考知识点

导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

数学高考必背知识点

一、导数的应用

1.用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益问题

3)面积、体积最(大)问题

二、推理与证明

1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

数学高考复习知识点

函数的性质

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:

定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;

f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

判别方法:定义法,图像法,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式。

相关思维导图模板

数学高考知识点归纳2021思维导图

树图思维导图提供 数学高考知识点归纳2021 在线思维导图免费制作,点击“编辑”按钮,可对 数学高考知识点归纳2021  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:52e04091bcf4d5e64184733fcecec3a2

2022高考数学知识点归纳总结最新思维导图

树图思维导图提供 2022高考数学知识点归纳总结最新 在线思维导图免费制作,点击“编辑”按钮,可对 2022高考数学知识点归纳总结最新  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:34c7838f1cd121b0c3807f5046dbfe72