TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学高一年级数学必修三知识点总结思维导图

高一年级数学必修三知识点总结思维导图

  收藏
  分享
会员免费下载30积分
会员免费使用30积分
心不动则不痛 浏览量:22022-12-21 16:26:04
已被使用0次
查看详情高一年级数学必修三知识点总结思维导图

高一年级数学必修三知识点总结思维导图,具体内容包含空间几何体的结构特征、三视图和斜二测画法,空间几何体包含柱、锥、台和球,并详细介绍了各自的定义、分类、表示和几何特征,而三视图则是指空间几何体在不同视角下的展现方式,包含正视图、侧视图和俯视图。而斜二测画法则是一种直观的绘画方式,通过保持线段与坐标轴平行且长度比例不变的特点,将空间几何体以更加真实的形式呈现出来。

思维导图大纲

高一年级数学必修三知识点总结思维导图模板大纲

【篇一】

1、柱、锥、台、球的结构特征

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图光线从几何体的前面向后面正投影;侧视图从左向右、俯视图从上向下

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

【篇二】

两个平面的位置关系:

1两个平面互相平行的定义:空间两平面没有公共点

2两个平面的位置关系:

两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

1半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

2二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

3二面角的棱:这一条直线叫做二面角的棱。

4二面角的面:这两个半平面叫做二面角的面。

5二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

6直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

【篇三】

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

棱锥的性质:

1侧棱交于一点。侧面都是三角形

2平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

1各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

3多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

相关思维导图模板

高一必修一数学知识点总结思维导图

树图思维导图提供 高一必修一数学知识点总结 在线思维导图免费制作,点击“编辑”按钮,可对 高一必修一数学知识点总结  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:ceeb060c56ea87ac16dbffe196536338

高中数学必修三知识点归纳思维导图

树图思维导图提供 高中数学必修三知识点归纳 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学必修三知识点归纳  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:8dd66ac3c1628ff55d62cf296f96a40c