TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学理科数学高考知识点思维导图

理科数学高考知识点思维导图

  收藏
  分享
会员免费下载30积分
会员免费使用30积分
篱下浅笙歌 浏览量:92023-04-04 16:30:15
已被使用1次
查看详情理科数学高考知识点思维导图

理科数学高考知识点思维导图中包含了常用的诱导公式、不等式的定义与性质、和排列、函数、数列,常用的诱导公式包含了六个不同的公式组,可以帮助考生快速推导出角度的三角函数值,不等式的性质包含了对称性、传递性、可加性、可乘性、可乘方和可开方,可以方便考生对不等式进行运用和推导,排列、函数、数列知识点则为考生提供了不同的数学工具,帮助考生更加深入地理解数学的本质和应用。在备考高考理科数学的过程中,多观察、多吃苦、多研究是必不可少的三个条件,同时要记、要背、要讲练,希望以上整理对大家备考理科数学有所帮助。

思维导图大纲

理科数学高考知识点思维导图模板大纲

求学的三个条件是:多观察、多吃苦、多研究。每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。下面是树图网给大家整理的一些理科数学高考的知识点,希望对大家有所帮助。

高考理科数学备考知识点

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高三年级高考理科数学知识点整理

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,

有a-b>0⇔;a-b=0⇔;a-b<0⇔.

另外,若b>0,则有>1⇔;=1⇔;<1⇔.

概括为:作差法,作商法,中间量法等.

3.不等式的性质

(1)对称性:a>b⇔;

(2)传递性:a>b,b>c⇔;

(3)可加性:a>b⇔a+cb+c,a>b,c>d⇒a+cb+d;

(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒;

(5)可乘方:a>b>0⇒(n∈N,n≥2);

(6)可开方:a>b>0⇒(n∈N,n≥2).

复习指导

1."一个技巧"作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2."一种方法"待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

高考理科数学知识点归纳

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要"取出元素"和"对取出元素按一定顺序排成一列"两个过程,而获得一个组合只需要"取出元素",不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k•k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免"选取"时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

理科数学高考知识点相关文章:

★ 高考数学必考知识点归纳总结整理2021

★ 高三数学高考知识点总结2021

★ 高考数学必考知识点归纳总结2021

★ 2021高中数学知识点总结

★ 高考数学备考总复习知识点归纳

★ 高考数学考前知识要点归纳2021

★ 2021高考数学必考知识点归纳

★ 分享数学高考知识点总结2021

★ 最新高三数学重要知识点归纳2021

★ 高考数学备考必修必考知识点归纳总结2021

相关思维导图模板

高考理科数学必考知识点思维导图

树图思维导图提供 高考理科数学必考知识点 在线思维导图免费制作,点击“编辑”按钮,可对 高考理科数学必考知识点  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:13fc03ab87d15c42d6b40f836323fdaf

高考理科数学重要知识点归纳思维导图

树图思维导图提供 高考理科数学重要知识点归纳 在线思维导图免费制作,点击“编辑”按钮,可对 高考理科数学重要知识点归纳  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:d4b4a051c05a87ba117bec00fa053225