你了解,等差数列求和公式是什么吗?等差数列,是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。等差数列的求和一般公式是和=(首项+末项)x项数÷2。
树图思维导图提供 等差数列求和公式是什么 在线思维导图免费制作,点击“编辑”按钮,可对 等差数列求和公式是什么 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:6bb19ca6f56c2fd5d0bb18251352eac0
等差数列求和公式是什么思维导图模板大纲
等差数列求和公式是什么_有哪些性质
你了解,等差数列求和公式是什么吗?等差数列,是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。等差数列的求和一般公式是和=(首项+末项)x项数÷2。公差就是相邻两个项之差,项数就是数列中全部项有多少个,项数=(末项-首项)÷公差+1。
1、公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。
2、公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。
3、若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。
4、对任何m、n ,在等差数列中有:an = am + (n-m)dm、n∈N+),特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。
5、一般地,当m+n=p+qm,n,p,q∈N+)时,am+an=ap+aq。
6、公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。
7、在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。
8、当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。
1、等差数列基本公式:末项=首项+(项数-1)__公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)__公差和=(首项+末项)__项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。
2、Sn=na(n+1)/2n为奇数;sn=n/2(An/2+An/2+1)n为偶数
3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。
4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。
乘法与因式分解
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/a X1__X2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前 n 项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+ … +(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+ …n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理
a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积S=c__h 斜棱柱侧面积 S=c'__h
正棱锥侧面积S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2
圆柱侧面积S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l
弧长公式l=a__r a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2__l__r
锥体体积公式V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h
斜棱柱体积V=S'L 注:其中,S'是直截面面积, L 是侧棱长
柱体体积公式V=s__h 圆柱体 V=pi__r2h
高中文科数学必背公式总结
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到 2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及 3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上 k∈Z)
高三数学最为关键的是式子变形和解题思维,这需要从题目所给的题设和问题去寻求答案,而不是一拿到题就马上联想到哪个知识点或者做过类似得题。
高三数学的考察特点在于题目的灵活性和多变性,同样一道题,只要所给条件变为所求条件,都能形成一个新的题型。
所以我们在高三备考高考数学的时候,要加大审题和思维的比例点,弱化"过程经验",强化"思维步骤"。抓分重点按照试卷分布顺序依次为选择、填空、简单解答题到大题难题。
树图思维导图提供 八年级物理(第三单元) 在线思维导图免费制作,点击“编辑”按钮,可对 八年级物理(第三单元) 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:13a65c3defeb87004aa1c7c846526ef1
树图思维导图提供 贝克哈德变革公式D×V×FS>RC【渴望*愿景*行动>改变的阻力】 在线思维导图免费制作,点击“编辑”按钮,可对 贝克哈德变革公式D×V×FS>RC【渴望*愿景*行动>改变的阻力】 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:1aa461813e5322a2460bc11ee9ac0afc