什么叫做点到直线的距离?连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。
树图思维导图提供 点到直线的距离公式及其证明方法 在线思维导图免费制作,点击“编辑”按钮,可对 点到直线的距离公式及其证明方法 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:6dabad63f828292fe6ad3e17a7b2a80e
点到直线的距离公式及其证明方法思维导图模板大纲
点到直线的距离公式及其证明方法是什么
什么叫做点到直线的距离?连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。下面小编给大家整理了关于点到直线的距离公式及其证明方法的内容,欢迎阅读,内容仅供参考!
点到直线的距离公式
定义法证:根据定义,点P(x?,y?)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A则l'的解析式为y-y?=(B/A)(x-x?)把l和l'联立得l与l'的交点Q的坐标为((B^2x?-ABy?-AC)/(A^2+B^2), (A^2y?-ABx?-BC)/(A^2+B^2))由两点间距离公式得:
PQ^2=[(B^2x?-ABy?-AC)/(A^2+B^2)-x0]^2
+[(A^2y?-ABx?-BC)/(A^2+B^2)-y0]^2
=[(-A^2x?-ABy?-AC)/(A^2+B^2)]^2
+[(-ABx?-B^2y?-BC)/(A^2+B^2)]^2
=[A(-By?-C-Ax?)/(A^2+B^2)]^2
+[B(-Ax?-C-By?)/(A^2+B^2)]^2
=A^2(Ax?+By?+C)^2/(A^2+B^2)^2
+B^2(Ax?+By?+C)^2/(A^2+B^2)^2
=(A^2+B^2)(Ax?+By?+C)^2/(A^2+B^2)^2
=(Ax?+By?+C)^2/(A^2+B^2)
所以PQ=|Ax?+By?+C|/√(A^2+B^2),公式得证。
(一)两角和公式
1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
(二)倍角公式
1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A
2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA
(三)半角公式
1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
(四)和差化积
1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
(五)几何体表面积和体积公式
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)
3、正方体:表面积:S=6a2,体积:V=a3(a-边长)
4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)
5、棱柱:体积:V=Sh(S-底面积,h-高)
6、棱锥:体积:V=Sh/3(S-底面积,h-高)
7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)
8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)
9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)
10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)
11、直圆锥:V=πr^2h/3(r-底半径,h-高)
12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)
13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)
14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)
15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)
16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)
(一)圆的公式
1、圆体积=4/3(pi)(r^3)
2、面积=(pi)(r^2)
3、周长=2(pi)r
4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】
5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
(二)椭圆公式
1、椭圆周长公式:l=2πb+4(a-b)
2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
3、椭圆面积公式:s=πab
4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积
树图思维导图提供 抓住重点 在线思维导图免费制作,点击“编辑”按钮,可对 抓住重点 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:4c49e4799ddf94a339c56e46eb96a826
树图思维导图提供 农村幼儿园利用绘本阅读开展安全教育的实践研究_副本 在线思维导图免费制作,点击“编辑”按钮,可对 农村幼儿园利用绘本阅读开展安全教育的实践研究_副本 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:2000927dcd222b18fa95af52d1709af8