高中数学知识点都有什么思维导图?在高考数学中,要掌握解题的方法和思路,这些方法都来源于基础的内容、公式和定义。只有深入理解这些基础知识,才能在解题中运用自如。以下是高中数学的知识点和公式:
1.集合/:集合是一些指定的对象的集合。其中的每个对象称为元素,集合中的元素具有确定性、互异性和无序性,常用的表示方法有列举法、描述法和图文法,还需要了解子集、交集、并集、补集、空集、全集。
2.数集:常用的数集有自然数集N、整数集Z、有理数集Q和实数集R。
3/.子集的等价关系:包含A∩B=A(A是B的子集)、A∪B=B(B是A的子集)、ABCuACuB、A∩CuB=空集CuAB、CuA∪B=全集AB。
4.交集与并集运算的性质:包含A∩A=A,A∩?=?,A∩B=B∩A,A∪A=A,A∪?=A,A∪B=B∪A,Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB。
5.有限子集的个数:如果集合A有n个元素,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
还需要掌握基本初等函数的概念和性质。通过绘制思维导图,可以更好的理解和记忆这些数学知识点。希望这些知识点对你有所帮助!
高中数学知识点都有什么思维导图模板大纲
2023高中数学知识点都有什么
高考数学对同样的题型要掌握解题方法,还有解题所有思路,解题方法都在基础的知识点、公式、定义里,只有将基础知识理解透彻,才能将其运用到解题当中。下面是小编为大家整理的高中数学知识点都有什么,希望对您有所帮助!
集合
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,则? A ;
②若 , ,则 ;
③若 且 ,则A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与的区别;(3) 与
的区别。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高中数学知识点总结及公式:基本初等函数
从其中一个顶点向一个边引一条线,交另一边上某一点,则这个图形变成有一条公共边且另一组边在同一直线上的两个三角形。有六个内角,其中公共边与另一组在同一直线上的边相交形成的两个角中,每一个角都是一个三角形的一个内角,且是另一个三角形的一个外角……
另外还有大于平角小于周角的角。
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
一个园,弧长和半径相等时所对应的角度是1弧度.弧度和角度的换算关系:
弧度·180/(2·π)=角度
诱导公式★
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
1.重视数学能力的培养
现阶段,高三数学复习正处于紧张阶段,我们应该重视学生数学能力的培养,教会学生将知识转化成能力的本领,以此帮助他们尽快解决各种数学考题。这亦是数学核心素养的重要要求。
如,学生复习几何知识时,可以将身边的皮球、水杯、易拉罐作为研究事物,通过简化、抽象等方式转化成课本中的几何图形,这样就能锻炼自己的数学抽象能力。这样的复习技巧看似简单,却能增强想象能力,为日后数学渗透生活奠定基础。
2.增强复习时的自我思考
跟随老师能快速解题,自己时却不得要领,这是因为自我思考较少,没有形成正确的解题思维。
对此,小编建议,学生在复习时,一定要重视自我探究、自我思考,并从中多总结解题思路,以此形成靠谱的数学直觉思维。至此,当学生拿到考试题,凭借第一感觉,就能知道怎么做。
另外,老师在复习指导时,也要留给学生足够的思考时间,力图让他们暴露思维过程,这样才能做出针对性复习指导。教师,切忌一堂课面面俱到地串讲知识,效果多半并不明显。因为学习的本身还是要靠学生自己。
1.回归课本,巩固基础:高考倒计时是回归课本的时候了,不要把课本丢下,着重看课本上的公式、理论、定理,学会变换,把基础打牢了自然能举一反三,灵活运用。
2.避免题海战术:对于一看就会的题型直接pass掉,做精题,精做题。不要什么都做没有选择,没有计划,如果每一题都做不仅会浪费时间而且也提高不了多少。
3.不专注于难题:不会的题不要一个人在那死扣,如果一道题你看了20分钟都没有思路,无从下手,要么请教高手要么放弃,不要专注于难题。尽量做一些看起来会但是不能全面做出来的题,克服会而做不对,对而做不全,这样提升空间比较大。
4.各类题的解题方法:不同的题型有不同的解题方法,要善于归纳和整理。要选择填空题可以选择排除法、带进去验证、直觉、数形结合的方法。简单的题答得时候尽量要全面。压轴题,选择、填空、答题都各自的压轴题,会做就做不会做就暂时放弃,先把会的题做出来后再回过头看。
5.训练考试意境:把每次训练都当做高考,数学的复习离不开做题,但是做题量不能太大,做题的时候更应该模拟高考的时间和场景,下午三点到五点考数学,所以在复习的时候也在这个时间做题,适应高考模式。
抓典型题型,重视通性通法,讲清易错易混点。注重一题多解,熟悉通性通法,重一题多变,讲深、讲透难点,达到做一题会一片的功效。此阶段强调运算对成绩的贡献,数学运算是学习数学的基本功。高考试题在考查考生运算能力的同时,还要考查考生思维的灵活性。所以,要使学生的运算能力得到提高,必须培养学生的观察能力和分析问题的能力,尽可能优化解题结构、减少运算量,从而提高运算的准确性。为了实现这一目标,要让学生学会猜算、估算、巧算。
另外,要求集中训练选填题,讲解与总结解决选择题与填空题的方法。选择题鼓励学生积极思维敢于筛选,特别是有的答案已摆在面前,可用特例法、验证法、图解法、结论法等。近几年的高考题选择题中,有很多题目就可以使用技巧,有的甚至不需要动笔就能得出答案。通过模拟考试和选填训练,目的是培养学生的应试能力和技巧,规范解题和做题速度、难度。
最后调整阶段是温书阶段,调整心理,回到基础,回归课本,对课本内容重新整理做到胸有成竹,增强信心,自我调整作息,以平和的心态迎接高考。
重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。例如:三视图、茎叶图、定积分、正态分布、统计案例等。
立足基础,强调通性通法,增大覆盖面。从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕"双基"对数学的核心内容与基本能力进行重点考查。
突出新课程理念,关注应用,倡导"学以致用"。新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。有意训练每年高考试题中都出现的高频考点。
树图思维导图提供 数学高中学习有什么方法 在线思维导图免费制作,点击“编辑”按钮,可对 数学高中学习有什么方法 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:89a3af7f8269ccae341ab0794a71e69c
树图思维导图提供 高中数学高效实用的学习方法 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学高效实用的学习方法 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:926c67882518573f0431db2120824266