会考数学必背知识点高中,高中数学重点知识点全总结思维导图,包含了高中数学的重点知识点,如命题的四种形式相互关系、映射的概念、函数的三要素、反函数的存在条件及求反函数的步骤、反函数的性质、函数的奇偶性判断、三类角的求法、正棱柱和正棱锥的计算方法、直线与圆的位置关系判断方法、线性规划问题的解法。而想要学好数学,则需要培养兴趣,比如欣赏数学的美感、注意数学在实际生活中的应用、采用灵活的教学手段与时俱进、适当看一些科普类的书籍和思维导图模板,这样才能更好的掌握数学知识,提升数学素养。
会考数学必背知识点高中,高中数学重点知识点全总结思维导图模板大纲
1、命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
3、 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
4、反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
5、反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
6、 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
1、三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
3、怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
4、 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
不看后悔!清华名师揭秘学好高中数学的方法
培养兴趣是关键。学生对数学产生了兴趣,自然有动力去钻研。如何培养兴趣呢?
(1) 欣赏数学的美感
比如几何图形中的对称、变换前后的不变量、概念的严谨、逻辑的严密……
举个例子,
通过对旋转变换及其不变量的讨论,我们可以证明反比例函数、“对勾函数”的图象都是双曲线——平面上到两个定点的距离之差的绝对值为定值(小于两个定点之间的距离)的点的集合。
(2)注意到数学在实际生活中的应用。
例如和日常生活息息相关的等额本金、等额本息两种不同的还款方式,用数列的知识就可以理解.
学好数学,是现代公民的基本素养之一啊.
(3)采用灵活的教学手段,与时俱进。
利用多种技术手段,声、光、电多管齐下,老师可以借此把一些知识讲得更具体形象,学生也更容易接受,理解更深。
(4)适当看一些科普类的书籍和文章。
比如:学圆锥曲线的时候,可以看看一些建筑物的外形,它们被平面所截出的曲线往往就是各种圆锥曲线,很多文章对此都有介绍;还有圆锥曲线光学性质的应用,这方面的文章也不少。
数学会考考试必考知识点
等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:S=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
反函数:
(1)定义:
(2)函数存在反函数的条件:
(3)互为反函数的定义域与值域的关系:
(4)求反函数的步骤:
①将看成关于的方程,解出,若有两解,要注意解的选择;
②将互换,得;
③写出反函数的定义域(即的值域)。
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
树图思维导图提供 高中数学教师实用教学总结 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学教师实用教学总结 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:8431d787136fd175cf52f564d0c2a473