苏教版小学数学一年级上册教案思维导图包含的知识点包含:确定现象与不确定现象的区分、主题图及例1的教学方法,教科书在教学过程中通过丰富的实例和情境,帮助学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系,教学内容也说明了确定现象的可预知性和不确定现象的随机性。教学方法上,主题图的呈现体现了学生已有的生活经验,进一步引导学生从自己的角度思考问题,而例1的教学则通过摸棋子的试验,让学生初步体验确定事件和不确定事件的区别,这些教学方法的运用,有利于学生在课堂上主动思考,增强数学学习的趣味性和实效性。
苏教版小学数学一年级上册教案思维导图模板大纲
课程类型与结构上:前者是职业性的,理论实践一体化,专业课比重应较大,并要注重岗位实操技能训练;后者是学术性、系统化、纯理论,基础课比重大,强调基础扎实和理论的系统性今天树图网在这里整理了一些苏教版2021最新小学数学一年级上册教案,我们一起来看看吧!
1.体验事件发生的确定性和不确定性。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。
教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的
(1)主题图的教学。
教科书第104页呈现了学生熟悉的"新年联欢会上抽签表演节目"的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在"抽签表演节目"时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,"表演某种节目"这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。
需要注意的是,只要学生能够结合具体的问题情境,用"可能"等词语来描述就可以了,如"我可能要表演唱歌"。不必要求学生一定要说出"我表演唱歌这件事情的发生是不确定的"。
(2)例1的教学。
教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。
教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。
①教学第一个问题"哪个盒子里肯定能摸出红棋子"。教师可以先提问"左边的盒子里肯定能摸出红棋子吗?"让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,"在左边的盒子里摸出红棋子"这个事件的发生是确定的。教师再提问"在右边的盒子里肯定能摸出红棋子吗?"让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,"在右边的盒子摸出红棋子"这个事件的发生是不确定的。
②②第二个问题"哪个盒子里不可能摸出绿棋子"和第三个问题"哪个盒子里可能摸出绿棋子"可一同教学。教师可以先引导学生猜测"左边的盒子里可能摸出绿棋子吗?""右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?",同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,"在左边的盒子里不能摸出绿棋子"这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,"在右边的盒子里摸出绿棋子"这个事件的发生是不确定的。
③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教
科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。
④另外,在汇报时只要学生能够结合具体的问题情境,用"在左边的盒子里一定能摸出红棋子""在右边的盒子里可能摸出红棋子"等描述进行表达就可以了,不必要求学生一定要说出"在左边的盒子里摸出红棋子这个事件的发生是确定的","在右边的盒子摸出红棋子这个事件的发生是不确定的"。
⑤(3)例2的教学。
⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。
⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用"一定""不可能""可能"等词语来表述就可以了,如"地球一定每天都在转动""三天后可能下雨""太阳不可能从西边升起"等。不必要求学生一定要说出"我从出生到现在没吃过一点东西这件事的发生是确定的""吃饭时,人用左手拿筷子这件事情的发生是不确定的""每天都有人出生这件事情的发生是确定的"。
⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的.。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如"明天的拔河比赛我们班会赢"。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。
⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。
为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对"掷一枚硬币,出现正面"这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。
一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。
由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。
教学内容:冀教版《数学》五年级上册第29-31页教学目标:
1、经历猜测、实验、数据整理和描述的过程,体验事件发生的可能性。
2、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出预测,并阐述自己的理由。
3、积极参加摸棋子活动,在用可能性描述事件的过程中,发展合情推理能力。
教学过程:
一、创设情境
师生谈话,由围棋子是什么颜色的引出把6个黑棋子,4个白棋子放在盒子中和"说一说"的问题,让学生发表自己的意见。
(设计意图:由围棋子是什么颜色的问题引入学习活动,既调动学生学习的`兴趣,又是摸棋子活动的准备。)
二、摸棋子实验A
1、教师提出摸棋子的活动和用"正"字记录黑白棋子的出现次数的要求,全班同学轮流摸棋子。
(设计意图:学生猜并摸出棋子,亲身感受事件发生的不确定性。)
2、交流学生统计的情况,把结果记录在表(一)合计栏。
(设计意图:使学生经历收集整理的过程,为下面的交流作铺垫。)
3、提出:观察全班摸棋子的结果,你发现了什么?让学生充分发表自己的意见。
(设计意图:从全班统计结果的描述中,感受统计的意义,为体验可能性的大小积累直观经验和素材。)
三、摸棋子实验B
1、提出:如果把盒子中的棋子换成9个黑的,1个白的,会出现什么结果?学生发表意见后,全班进行摸棋子实验。然后整理统计记录。(设计意图:改变事物的条件,让学生猜测,再摸,发展学生的数学思维和合理推理能力,获得愉快的学习体验。)
2、让学生观察描述统计结果。
然后提出:谁能解释一下,为什么这次摸出黑色棋子多呢?鼓励学生大胆发表自己的意见。
(设计意图:在观察描述摸棋子结果的过程中,感受摸棋子实验的意义,初步体验摸出什么颜色的棋子的次数和盒子中放的这种颜色的棋子个数有关系。)
四、摸棋子实验C
1、提出:如果把盒子中的棋子换成1个黑的,9个白的,让学生猜一猜摸中哪种颜色棋子的次数多,再摸。然后整理统计结果,填在表(三)合计栏中,并和大家猜的结果进行比较。
(设计意图:在学生已有活动经验的背景下,进行猜测、实验,发展学生的合理推理能力,激发参与活动的兴趣。)
2、提出:谁能解释一下,为什么这次摸出白色棋子多呢?鼓励学生大胆发表自己的意见。
(设计意图:在两次实验结果的分析比较中,再次体验到,摸中哪种颜色的棋子的可能性和放入盒子里这种颜色棋子的个数有关系。)
五、可能性大小
1、提出"议一议"的问题,让学生讨论:摸中哪种颜色的棋子的次数跟盒子中棋子个数有关系吗?得出盒子中哪种颜色的棋子多,摸中的次数就多,反之就少。
(设计意图:在亲身实验的基础上,认识盒子中放棋子的情况和摸棋子结果的关系。)
2、教师介绍可能性大小的含义。鼓励学生用可能性大小描述实验的结果。
(设计意图:理解可能性大小的部分意义,学会用可能性大小描述实验结果。)
六、课堂练习与问题讨论
学生独立完成练习。
【教学目标】1.知识与技能
认识通分的意义;
掌握通分的方法,能运用通分的知识比较异分母分数的大小.
2.过程与方法
在比较大小的同时体会多种方法解决问题,提高观察、分析和逻辑思维能力.
3.情感、态度与价值观
在比较异分母分数大小的过程中,感受通分的必要性,体验数学学习的价值。
【教学重点】
理解通分的意义,掌握通分的方法.
【教学方法】
(1)运用转化原理,组织好铺垫训练,帮助学生实现有效学习迁移。在新旧知识的衔接处铺路搭桥,激活学生思路,引导学生去获取新知;
(2)充分发挥教师的主导作用,采用多种教学方法和课堂评语,激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
(3)练习设计由浅入深,由易到难,注意练习的.形式、梯度和侧重点,激活学生的学习兴趣,巩固所学知识。
【课时安排】
一课时
【教学过程】
一、复习导入:
1、导语:我们学习了分数大小的比较有两种情况,还记得吗?谁来说一说是哪两种情况?
有部分同学很快说出:一种是分母相同的分数,分子大的分数较大;另一种是分子相同的分数,分母小的分数较大
2、请同学们看大屏幕的复习题,看谁回答得又快又对:
在圆圈里填上﹤﹥或﹦
○○○ ○
二、探究新知
教师导入新课:如果分子、分母都不相同的分数怎样比较大小呢?
1、教师谈话引入:我知道同学们都很喜欢读书,老师给大家推荐一本好书《人民的好警察任长霞》,这本书介绍了河南省登封市公安局长任长霞的先进事迹,我们书中的同伴红红和亮亮正在读这本书。
2、出示图片,交流方法。
教学预设
(1)求谁看的页数多实际就是求什么?
(就是比较二分之一和三分之二的大小)
(2)今天我们就学习异分母分数大小的比较,
(板书异分母分数大小的比较)
3、合作探究,分组讨论。
(1)提出问题,引发思考
请同学们想一想怎样比较二分之一和三分之二的大小?
(2)交流比较分数大小的方法
教学预设:
●用画图的方法比较.
展示:画图表示
教师引导:如果分母或者分子数太大,这种办法就不好用了,同学们能不能借助已经学过的知识,设法把这些分数转化同分母的分数,再比较出它们的大小呢?
学生自己探究(此时要给学生留些探究的时间),教师参与学生的学习.交流学法.
●我是这样想的,把他们转化成分母相同的两个分数,就便于比较它们的大小了,再根据分数的基本性质,把和都转化成不改变原分数的大小,但分母都是6的分数和.同分母分数相比较,分子大的分数比较大,因为<,所以<
(教师板书计算过程).
●想一想,在把和这两个分数转化成同分母分数的过程中,都借助了哪些旧知识?
学生在回忆的基础上得出:借助分数的基本性质
(3)认识通分
把和这两个异分母分数化成和原来分数相等的同分母分数.这个转化在数学上称为通分.
教师板书:把异分母分数化成和原来分数相等的同分母分数叫通分.
教师强调:想学会通分必须注意哪两点?
预设:
下划线部分和斜体字部分,也就是第一必须是把异分母分数化成同分母分数,第二转化后的分数必须和原来分数相等。
三、例题
做书上79页试一试
、、(1)每组同学完成一组中两个分数的通分,请三名学生板演.
(2)请板演的学生说出通分的思考过程,集体评价并且订正.
四、巩固练习(出示大屏幕题)
1、填空:
(1)通分是根据分数的(),通分的目的是把()分母分数化成()分母分数。
2、下列哪组通分正确?哪组不对,为什么?
=()=()
=()=()
五、总结
1、用通分的方法比较分数的大小你还有疑问吗?
预设:老师比较和的大小可以把他们转化成是分子都是6的分数吗?
(你真是个爱动脑筋的好孩子!老师明确告诉你"可以",但这个过程不叫通分,而79页试一试的要求是先通分,再比较大小,如果没有"先通分"就可以这样做了)
2、同学们回顾本节课的学习,说说自己学到些什么?
预设:
A我会用通分的方法来比较异分母分数的大小。
b我学会了转化的学习方法,把没学过的知识转化成已学过的知识来解决问题。
c我学会了通分。
……
六、布置作业
80页练一练1、2、3、4。
【板书设计】
分数大小的比较——通分
因为<,所以<
把异分母分数化成和原来分数相等的同分母分数叫通分.
教学内容:冀教版《数学》五年级上册第34-35页
教学目标:
1、结合具体事例,经历用分数表示事件发生的可能性的过程。
2、能判断一些简单事件发生的等可能性,并会用分数表示。
3、在判断、讨论可能性的过程中,能进行有条理的思考。认识到许多实际问题可以借助数学来表述和交流。
教学过程:
一、问题情境
师生谈话提出:袋子里有一白一黑两个棋子,任意摸出一个,有几种可能?让全班讨论交流。
(设计意图:由学生熟悉而又喜欢的话题引入,让学生带着轻松的'心情进入学习中。)
二、求可能性
1、教师用激励性启发性的谈话,提出"摸到白子和黑子各占所有可能性的几分之几"的问题,给学生一点思考时间,鼓励学生回答,最后教师进行概述。
(设计意图:在教师的启发引导下,使学生初步懂得事件发生可以用分数来表示,感受有些实际问题可借助数学表述。)
2、提出问题(2),让学生讨论有几种可能,都是什么。列举出来。(设计意图:讨论有几种可能,为用分数表示可能性作准备。)
3、教师启发性提出"每一种可能可以用哪个分数表示"的问题,让学生讨论并发表自己的意见,得出:每种可能都可以用1/3表示。
(设计意图:让学生尝试用分数表示可能性,使学生获得积极的学习体验,培养学生的语言表达能力,初步体会用数学语言表述生活中的实际问题。)
三、尝试练习
1、教师谈话并拿出骰子,让学生观察,说一说有什么特点。
(设计意图:观察骰子特征,为后面用分数表示每个面朝上的可能性作铺垫。)
2、提出"议一议"中的问题,让学生充分发表自己的意见。知道每个面朝上的可能性用1/6表示。
(设计意图:结合掷骰子事情,给学生提供自主发展、有条理思考、表达问题的机会。形成用分数表示事件的等可能性的思维过程。)
四、设计游戏
1、教师提出用扑克牌设计一个符合要求的游戏。给学生充分的时间,让他们独立思考并试做。
(设计意图:为学生创造独立思考、动手试做的空间,考查学生能否把学到的知识用到实际中去。)
2、交流学生设计的方案,让学生说一说是怎么想的。
(设计意图:给学生提供充分展示不同方案和表达的机会,让学生在展示的过程中体验学习的快乐。)
五、课堂练习
学生独立完成练习。
教学目标:
1、结合具体实例,在观察、讨论、操作的活动中,经历判断图形平移和在方格纸上按要求将图形平移的过程。
2、能判断图形的平移,能在方格纸上将简单的图形按要求平移。
3、在探索平移的过程中进一步发展空间观念。
教学重难点:
1、能在方格纸上按要求将图形平移。
2、进一步发展空间观念。
教学准备:
了解生活中的平移现象。
课前修改:
教学过程:
一、平移现象
1、让学生观察图片,说一说这些事物重有哪些平移。
2、提出兔博士的问题,学生交流生活中的平移现象。
二、判断平移
1、(1)题学生先观察数红的两组图,说一说有什么,发现了什么,然后判断哪些图形通过平移可以互相重合,重点说一说图形是怎样平移的.。
2、(2)题安排两个环节。
1)先让学生弄清题的要求,然后在书中独立完成。
2)交流展示涂色后的图形,重点说一说自己是怎样判断的。
三、平移图形
1、让学生在书中岸(1)题的要求画出图形,重点交流画的方法。
2、鼓励学生自主完成(2)题,集体交流。
练一练
1、给学生充分的作图时间,师巡视辅导后进。
2、有余力学生独立完成
★ 苏教版数学一年级上册2021最新教案
★ 苏教版一年级数学上册教案最新文案
★ 苏教版一年级数学2021最新教案上册
★ 苏教版一年级数学总复习教案最新范文
★ 苏教版一年级数学上册练习五教案2021模板
★ 苏教版2021一年级语文教案板书设计五篇
★ 一年级语文教案上册小学教案2021五篇
★ 一年级语文教案2021苏教版本五篇
★ 2021年苏教版老师版本一年级语文教案板书五篇
★ 苏教版一年级数学下册公开课教案最新文案
树图思维导图提供 苏教版小学一年级数学上册教案2022 在线思维导图免费制作,点击“编辑”按钮,可对 苏教版小学一年级数学上册教案2022 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:1d80c29eb5ceec26f51fef07817472d5
树图思维导图提供 从问题到方程苏教版数学初一上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 从问题到方程苏教版数学初一上册教案 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:83002bb06ee217e42eeda0a3e2a53b85