数学初中教案范文思维导图篇介绍了关于无理数、平方根、立方根的教学内容和教学方法,通过拼图活动和计算器探索活动教学,让学生了解无理数的概念,引入平方根和立方根的概念和开方运算,在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。教学建议包含重点、难点分析和知识结构,让学生从实际问题中发现数量之间的关系并抽象为具体的公式,培养学生观察、分析及概括的能力,通过具体例子了解公式、应用公式。教学方法建议则是让学生在具体例子的基础上挖掘公式中的思想和应用的普遍性,让学生自己尝试探求数量之间的关系,在已有公式的基础上通过分析和具体运算推导新公式,观察数量之间的对应变化规律,列出公式,在根据公式解决问题。
数学初中教案范文思维导图模板大纲
通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。这里给大家分享一些关于数学初中教案范文,方便大家学习。
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点
1.教学重点:菱形的两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算。这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成。程度好一些的班级,可以选讲例3。
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1 菱形的四条边都相等;
性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1 对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:
(1)是一个平行四边形;
(2)两条对角线互相垂直。
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2 四边都相等的四边形是菱形。
五、例习题分析
例1 (教材P109的例3)略
例2(补充)已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F。
求证:四边形AFCE是菱形。
证明:∵ 四边形ABCD是平行四边形,
∴ AE∥FC。
∴ ∠1=∠2。
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF。
∴ EO=FO。
∴ 四边形AFCE是平行四边形。
又 EF⊥AC,
∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形)。
※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F。
求证:四边形CEHF为菱形。
略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF。
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形。
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是 ;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线 的四边形是菱形。
2.画一个菱形,使它的两条对角线长分别为6cm、8cm。
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是 ( )。
(A)两条对角线相等
(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直
(D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC。求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案,花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点,画出花边图形。
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能列表、描点、连线法画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
[教学重点和难点]
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
[教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2反比例函数y?2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x
222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.__
22探索活动3反比例函数y??与y?的图象有什么共同特征?__(1)可以用画反比例函数y?
引导学生从通过与一次函数的图象的对比感受反比例函数图象"曲线"及"两支"的特征。(即双曲线)反比例函数y?
k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x
把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节"概念加例题型"课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用"导学导教,当堂训练"的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:
1.知识与技能:
(1)找相等关系列一元一次方程;
(2)用移项解一元一次方程。
(3)掌握移项变号的基本原则
2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:
利用移项解一元一次方程。
五、教学难点:
移项法则的探究过程。
六、教学过程:
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )
A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的一元一次方程。
2.会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。
(三)导教导学
1.出示自学指导
自学教材问题2到例3的内容,思考以下问题:
(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?
(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如"ax+b=cx+d"类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2.学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。
3.交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25(板书)
【总结提升】解决"分配问题"应用题的列方程的基本要点:
A.找出能贯穿应用题始终的一个不变的量。
B.用两个不同的式子去表示这个量。
C.由表示这个不变的量的两个式子相等列出方程。
设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对"分配问题"应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着"如何解这类方程?"的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如"ax+b=cx+d"类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
《解一元一次方程——移项》教学设计(魏玉英)
师:为什么等式(方程)可以这样变形?依据什么?
(出示)依据等式的基本性质
即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式。
师:解一元一次方程中"移项"起了什么作用?
(出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式。(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改
《解一元一次方程——移项》教学设计(魏玉英)
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解"ax+b=cx+d"型的一元一次方程的步骤:
(1) 移项,
(2) 合并同类项,
(3) 系数化为1
(综合训练) 解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的'核心和重点。
(四)我总结、我提高:
通过本节课的学习我收获了。
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1.下列方程变形正确的是( )
A.由-2x=6, 得x=3
B.由-3=x+2, 得x=-3-2
C.由-7x+3=x-3, 得(-7+1)x=-3-3
D.由5x=2x+3, 得x=-1
2.一批游客乘汽车去观看"上海世博会"。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一 道"ax+b=cx+d"型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。
设计意图:
让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
教学目标:
1、理解切线的判定定理,并学会运用。
2、知道判定切线常用的方法有两种,初步掌握方法的选择。
教学重点:
切线的判定定理和切线判定的方法。
教学难点:
切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。
教学过程:
一、复习提问
【教师】
问题1.怎样过直线l上一点P作已知直线的垂线?
问题2.直线和圆有几种位置关系?
问题3.如何判定直线l是⊙O的切线?
启发:
(1)直线l和⊙O的公共点有几个?
(2)圆心O到直线L的距离与半径的数量关系 如何?
学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)
再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的"切线的判定定理"(板书课题)
二、引入新课内容
【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。
证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。
定理:经过半径外端并且垂直于这条半径的直线是圆的切线。
定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,
求证:直线l是⊙O的切线
证明:略
定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A
∴直线l为⊙O的切线。
是非题:
(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )
(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )
三、例题讲解
例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。
求证:直线AB是⊙O的切线。
引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。
证明:连结OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直线AB经过半径OC的外端C
∴直线AB是⊙O的切线。
练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。
练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。
求证:CD是⊙O的切线。
例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。
求证:DE是⊙O的切线。
思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?
四、小结
1.切线的判定定理。
2.判定一条直线是圆的切线的方法:
①定义:直线和圆有唯一公共点。
②数量关系:直线到圆心的距离等于该圆半径(即d = r).[
③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。
3.证明一条直线是圆的切线的辅助线和证法规律。
凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,"连半径,证垂直";不知公共点,则"作垂直,证半径"。
五、布置作业:略
《切线的判定》教后体会
本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以"教师为引导,学生为主体"的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:
成功之处:
一、 教材的二度设计顺应了学生的认知规律
这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的"直线与圆相切的判定方法"的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。
二、重视学生数感的培养呼应了课改的理念
数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。
树图思维导图提供 初中七年级数学教案范文 在线思维导图免费制作,点击“编辑”按钮,可对 初中七年级数学教案范文 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:9d0c419b4c09067636433cb7ae1c65d6
树图思维导图提供 初中数学教学设计教案模板范文 在线思维导图免费制作,点击“编辑”按钮,可对 初中数学教学设计教案模板范文 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:1ee81c8087bed0c82e2053b0355ed534