根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二
树图思维导图提供 考研数二大纲 在线思维导图免费制作,点击“编辑”按钮,可对 考研数二大纲 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:2bcc80c587fd73dd86c90b74bbcb56d5
考研数二大纲思维导图模板大纲
高等数学、线性代数
多元函数微积分学
考试要求
了解多元函数的概念,了解二元函数的几何意义
了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质
了解多元函数偏导数与全微分的概念
会求多元复合函数一阶、二阶偏导数,会求全微分
了解隐函数存在定理,会求多元隐函数的偏导数
了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件
理解二重积分的概念,了解二重积分的基本性质
了解二重积分的中值定理,掌握二重积分的计算方法
常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程
一阶线性微分方程 可降阶的高阶微分方程
线性微分方程解的性质及解的结构定理
二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程
简单的二阶常系数非齐次线性微分方程 微分方程的简单应用
考试要求
了解微分方程及其阶、解、通解、初始条件和特解等概念
掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程
会用降阶法解下列形式的微分方程
理解线性微分方程解的性质及解的结构
掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程
会解自由项为多项式、指数函数、正弦函数、余弦函数
会用微分方程解决一些简单的应用问题.
行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
了解行列式的概念,掌握行列式的性质
会应用行列式的性质和行列式按行(列)展开定理计算行列式
矩阵
考试内容
矩阵的概念
矩阵的线性运算
矩阵的乘法
方阵的幂
方阵乘积的行列式
逆矩阵的概念和性质
考试要求
理解矩阵的概念
掌握矩阵的线性运算、乘法、转置以及它们的运算规律
理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件
了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念
了解分块矩阵及其运算
向量
考试内容
向量的概念 向量的线性组合和线性表示
向量组的线性相关与线性无关 向量组的极大线性无关组
向量组的秩与矩阵的秩之间的关系
考试要求
理解n维向量、向量的线性组合与线性表示的概念
理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法
了解向量组的极大线性无关组和向量组的秩的概念
了解向量组等价的概念
线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则
齐次线性方程组有非零解的充分必要条件
非齐次线性方程组有解的充分必要条件
考试要求
会用克莱姆法则
理解非齐次线性方程组的解的结构及通解的概念
会用初等行变换求解线性方程组
矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵
考试要求
理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量
理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件
掌握实对称矩阵的特征值和特征向量的性质
二次型
考试要求
掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念
了解二次型的标准形、规范形的概念以及惯性定理.
掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形
理解正定二次型、正定矩阵的概念,并掌握其判别法
试卷满分及考试时间
试卷满分为150分
考试时间为180分钟
答题方式
闭卷
考试
高等数学 80%
线性代数 20%
单选题 10小题,每题5分,共50分
填空题 6小题,每题5分,共30分
解答题(包括证明题) 6小题,共70分
函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数
基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质
函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算
极限存在的两个准则
单调有界准则
夹逼准则
考试要求
理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
了解函数的有界性、单调性、周期性和奇偶性.
理解复合函数及分段函数的概念了解反函数及隐函数的概念
掌握基本初等函数的性质及其图形,了解初等函数的概念
理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系
掌握极限的性质及四则运算法则
掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法
理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限
理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型
了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质
一元函数微分学
考试要求
理解导数和微分的概念,理解导数和微分的关系,理解函数的可导性与连续性之间的关系
掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式
了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分
了解高阶导数的概念,会求简单函数的高阶导数
会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数
掌握用洛必达法则求未定式极限的方法
理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法
掌握函数最大值和最小值的求法及其应用
会用导数判断函数图形的凹凸性
了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径
一元函数积分学
考试内容
原函数和不定积分的概念
不定积分的基本性质 基本积分公式定积分的概念和基本性质
定积分中值定理 积分上限的函数及其导数
牛顿-莱布尼茨(Newton-Leibniz)公式
不定积分和定积分的换元积分法与分部积分法
有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用
考试要求
理解原函数的概念,理解不定积分和定积分的概念
掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法
会求有理函数、三角函数有理式和简单无理函数的积分
理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式
了解反常积分的概念,会计算反常积分.
掌握用定积分表达和计算一些几何量与物理量
树图思维导图提供 二手书销售平台新航标 在线思维导图免费制作,点击“编辑”按钮,可对 二手书销售平台新航标 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:a92403b70afada50cf4fa4f56e0981c9
树图思维导图提供 1113爆卡会总结会会议纪要 在线思维导图免费制作,点击“编辑”按钮,可对 1113爆卡会总结会会议纪要 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:aaf6c152a765d5821e8e1787f2b3226e