TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学高考数学知识点2023思维导图

高考数学知识点2023思维导图

  收藏
  分享
免费下载
免费使用文件
花房姑娘 浏览量:32023-04-04 16:29:46
已被使用0次
查看详情高考数学知识点2023思维导图

学习高考数学必须与实践相结合,数学学习需要记、背、练,了解不等式(组)的实际背景,并掌握一元二次不等式与相应函数、方程的联系,尝试解决基本不等式的小值问题,还需要从实际情境中抽象出二元一次不等式组和简单的二元线性规划问题,并掌握二元一次不等式的几何意义,数学中的函数零点、二次函数的零点和数列的定义和分类知识点也需要掌握。

思维导图大纲

高考数学知识点2023思维导图模板大纲

学习必须与实干相结合。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是树图网给大家整理的一些高考数学知识点的学习资料,希望对大家有所帮助。

高三高考数学知识点整理

(1)不等关系

感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

①经历从实际情境中抽象出一元二次不等式模型的过程。

②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

(4)基本不等式:

①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的(小)值问题。

高考数学知识点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

高三年级高考数学知识点

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

相关思维导图模板

高考数学知识点总结2023思维导图

树图思维导图提供 高考数学知识点总结2023 在线思维导图免费制作,点击“编辑”按钮,可对 高考数学知识点总结2023  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:de9372264fe81115aa74672f26e89d66

2023高考数学知识点思维导图

树图思维导图提供 2023高考数学知识点 在线思维导图免费制作,点击“编辑”按钮,可对 2023高考数学知识点  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:67e43c5f03e398f10383430b79cdeb20