高考数学学科知识点思维导图包含了数学学科的基本知识点和学习资料,知识点包含不等式的定义及比较两个实数大小的方法,不等式的性质,函数的奇偶性,和复合函数的相关问题,不等式的性质包含对称性、传递性、可加性、可乘性、可乘方及可开方,复习指导包含作差法变形、待定系数法和常用性质。函数的奇偶性判断方法包含定义中的等价形式及对称单调性,复合函数的定义域求法需要注意优先处理定义域,这个模板是一份学习资料,希望能对数学学科的学习有所帮助。
高考数学学科知识点思维导图模板大纲
学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是树图网给大家整理的一些高考数学这门学科知识点的学习资料,希望对大家有所帮助。
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,
有a-b>0⇔;a-b=0⇔;a-b<0⇔.
另外,若b>0,则有>1⇔;=1⇔;<1⇔.
概括为:作差法,作商法,中间量法等.
3.不等式的性质
(1)对称性:a>b⇔;
(2)传递性:a>b,b>c⇔;
(3)可加性:a>b⇔a+cb+c,a>b,c>d⇒a+cb+d;
(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒;
(5)可乘方:a>b>0⇒(n∈N,n≥2);
(6)可开方:a>b>0⇒(n∈N,n≥2).
复习指导
1."一个技巧"作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.
2."一种方法"待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.
3."两条常用性质"
(1)倒数性质:①a>b,ab>0⇒<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,则
①真分数的性质:<;>(b-m>0);
②假分数的性质:>;<(b-m>0).
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由"同增异减"判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
(1)先看"充分条件和必要条件"
当命题"若p则q"为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与"p=>q"等价的逆否命题是"非q=>非p"。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看"充要条件"
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q
回忆一下初中学过的"等价于"这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。"充要条件"的含义,实际上与"等价于"的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如"两组对边分别平行的四边形叫做平行四边形"这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。
显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。
"充要条件"有时还可以改用"当且仅当"来表示,其中"当"表示"充分"。"仅当"表示"必要"。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的"结论"都可作为必要条件。
高考数学学科知识点相关文章:
★ 高考数学备考总复习知识点归纳
★ 高考数学必考知识点归纳总结整理2021
★ 数学必考知识点总结高三年级2021
★ 2021高中数学知识点总结
★ 高考数学必考知识点归纳总结2021
★ 高考数学备考必修必考知识点归纳总结2021
★ 高考数学考前知识要点归纳2021
★ 最新高三数学重要知识点归纳2021
★ 高中数学基本知识点归纳
树图思维导图提供 2017年高考数学学科知识点大全 在线思维导图免费制作,点击“编辑”按钮,可对 2017年高考数学学科知识点大全 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:7e2feb7b69d994c704541ae251d93405
树图思维导图提供 2018高考数学学科知识点 在线思维导图免费制作,点击“编辑”按钮,可对 2018高考数学学科知识点 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:8e0779d7a4e858b70d1a99692ecb628b