TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学北师大版七年级数学第一章教案文案思维导图

北师大版七年级数学第一章教案文案思维导图

  收藏
  分享
免费下载
免费使用文件
钻石心 浏览量:82023-04-04 21:54:14
已被使用0次
查看详情北师大版七年级数学第一章教案文案思维导图

北师大版七年级数学第一章教案文案思维导图是一篇教学设计文案,包含了导入环节、新授环节、巩固环节和总结环节,教学重点在于训练学生比较两个负数的大小,培养学生的逻辑思维能力,教学方法为引导发现法,学生学法为观察、讨论、归纳、练习,教学的难点在于利用比较两个异分母负分数的大小,教学设计中采用了多种教具学具来辅助教学。教师与学生互动活动设计包含提出问题,讨论归纳和出示练习题,学生进行巩固练习,教学步骤包含创设情境、复习提问和探索新知、讲授新课、归纳小结和随堂练习,还包含作业布置和板书设计。

思维导图大纲

北师大版七年级数学第一章教案文案思维导图模板大纲

教学过程设计主要包括导入环节、新授环节、巩固环节和总结环节。在导入环节,主要撰写如何引入课堂主题。今天树图网在这里给大家分享一些有关于北师大版七年级数学第一章教案最新文案,希望可以帮助到大家。

北师大版七年级数学第一章教案最新文案1

一、素质教育目标

(一)知识教学点

会利用比较两个负数的大小.

(二)能力训练点

利用概念比较有理数的大小,培养学生的逻辑思维能力.

(三)德育渗透点

不断加深对有理数比较大小方法的认识,渗透数形结合的思想.

(四)美育渗透点

通过本节课的学习,学生会发现利用比较两个负数大小与利用数轴比较任意两个数的大小是和谐统一的,学生会进一步感受到数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法总结规律,并辅之以变式训练进行扎实巩固,以复习提问作为铺垫,突破难点.

2.学生学法:观察→讨论→归纳→练习

三、重点、难点、疑点及解决办法

1.重点:利用比较两个负数的大小.

2.难点:利用比较两个异分母负分数的大小.

四、教具学具准备

投影仪(或电脑)、自制胶片.

五、师生互动活动设计

教师提出问题,学生讨论归纳;教师出示练习题,学生练习巩固.

六、教学步骤

(一)创设情境,复习提问

师:我们前面学习了,我相信大家学得都非常好.一定能做好下面这个题.

[板书]

比较大小

(1)与 与

(2)4与-5 0.9与1.1

-10与0 -9与-1

学生活动:(1)题在练习本上演算,两个学生板演,(2)题学生抢答.

【教法说明】(1)题是为了分散利用比较两个负分数的大小这一难点埋下了伏笔,在这个题目中用最简单的"∵,∴"的形式训练学生简单的推理能力.(2)题是复习利用数轴比较两个数的大小,让学生体会出这四个题中觉得难度较大的题目是最后小题两个负数比较大小,从而引出课题.

教师板书课题

[板书] 2.4 (2)

(二)探索新知,讲授新课

1.规律的发现

在比较-9与-1时,教师订正的同时要求学生说出比较-9与-1的根据(数轴上的两个数右边的总比左边的大),同时在黑板上(学生在练习本上)画出数轴.

提出问题:在数轴上任意取两个负数,比较大小,观察较小的数有什么特点?

学生活动:尝试举例,讨论得出结果—两个负数,大的反而小,或两个负数小的反而大.(师板书)

强调:今后比较两个负数的大小又多了一种方法,即两个负数,大的反而小.

【教法说明】教师注意"放"时要让学生带着针对性的问题去思考、分析,既给学生一片自己发挥想象的天地,又使学生不至于走偏.

巩固练习:

(出示投影1)

比较大小:

(1)-3与-8; (2)-0.1与-0.2;

(3)与; (4)与.

学生活动:讨论后抢答.

【教法说明】(1)题让学生讨论时注意写好比较大小的格式,运用"∵"、"∴"的格式初步训练学生逻辑推理能力.(2)(3)(4)题通过数的变化,巩固对规律的认识.

[板书]

解:

∴ ∴

2.出示例题(出示投影2)

比较大小

(1)与.

提出问题:对于异分母的两个负分数怎样利用比较大小?

学生活动:讨论后自己尝试写.

师:我们在复习时已比较出了与的,可以在此基础上直接得出结论.

[板书]

解:

∴ ∴

【教法说明】由于复习时学生对与已进行了比较,会非常轻松的完成此题目.教师设置了一级一级的台阶,让学生自己攀登,既发挥了学生的主体作用,又从题目的解决过程中训练了学生的推理能力.

巩固练习:(出示投影3)

比较大小:

(1)与,(2)与.

学生活动:两个学生板演,其他学生自己练习.

【教法说明】比较两个负分数的大小是这节的重点也是难点,利用这两个小题让学生从整体上把握一下方法,达到熟练掌握的程度.

(三)归纳小结

师:我们今天主要学习的是两个负数比较大小.

(1)两个负数,大的反而小.

(2)利用数轴可以比较任意两个数的大小,包括两个负数.

【教法说明】教师的小结必须把今天的所学纳入知识系统,明确说明利用数轴可以比较任意两数的大小,而利用比较大小只适用于两个负数.

七、随堂练习

1.判断题

(1)两个有理数比较大小,大的反而小

(2)

(3)有理数中没有最小的数

(4)若,则

(5)若,则

2.比较大小

(1)-2__________5,,-0.01__________-1

(2)和(要有过程)

3.写出不大于4的所有整数,并把它们表示在数轴上.

八、布置作业

(一)必做题:课本第67页A组7.

(二)选做题:课本第68页B组3.

九、板书设计

随堂练习答案

1.× × √ × √

2.(1)<,< >;(2)>.

3.±1,±2,±3,±4,0.

作业 答案

(一)必做题:7.(1) (2)

(3) (4)

(二)选做

探究活动

填空:

(1)若|a|=6,则a=______;

(2)若|-b|=0.87,则b=______;

(4)若x+|x|=0,则x是______数.

分析:已知一个数的求这个数,则这个数有两个, 它们是互为相反数.由

解: (1)∵|a|=6,∴a=±6;

(2)∵|-b|=0.87,∴b=±0.87;

(4)∵x+|x|=0,∴|x|=-x.

∵|x|≥0,∴-x≥0

∴x≤0,x是非正数.

点评:""是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对的代数定义,至少要认识到以下四点:

(1)任何一个数的一定是正数或0,即|a|≥0;

(2)互为相反数的两个数的相等,|a|=|-a|;

(3)如果一个数的是它本身,那么这个数一定是正数或0;如果一个数的是它的相反数,那么这个数一定是负数或0;

(4)求一个含有字母的代数式的值,一定要根据字母的取值范围分情况进行讨论.

北师大版七年级数学第一章教案最新文案2

一、教材分析

1、《同位角、内错角、同旁内角》是人教版新课标实验教材初中数学七年级下学期第五章《相交线与平行线》的第一节第三课时内容。

2、地位和作用

由于角的形成与两条直线的相互位置有关,学生已有的概念是两相交直线所形成的有公共顶点的角(邻补角、对顶角等)即两线四角,在此基础上引出了这节课:两直线被第三条直线所截形成的没有公共顶点的八个角的位置关系——同位角、内错角、同旁内角。研究这些角的关系主要是为了学习平行线做准备,同位角、内错角、同旁内角的判定恰恰是后面顺利地学习平行线的性质与判定的基础和关键。这一节内容起到了承上启下的作用:

两线四角 承上 三线八角 启下 平行线的判定和性质。

二、教学目标设计

由于本节课只有一课时,主要让学生理解同位角、内错角、同旁内角的概念,明确构成同位角、内错角、同旁内角的条件。所以,教学目标体现在:

(一)

1、明确构成同位角、内错角、同旁内角的条件,理解同位角、内错角、同旁内角的概念。

2、结合图形识别同位角、内错角、同旁内角。

3、通过变式或复杂图形找出同位角、内错角、同旁内角,培养学生的识图能力。让学生找到在千变万化的图形中的不变之处,能够抓住概念的重点。

(二)

1、从复杂图形分解为基本图形过程中,渗透化繁为简,化难为易的化归思想,从图形变化过程中,使学生认识几何图形的位置美。

2、通过观察,探究"三线八角"的过程培养学生的观察、抽象能力;发展图形观念,积极参与数学活动与他人合作交流的意识。

三、教学重点及难点:

(一)重点:根据图形识别哪两条直线被哪条直线所截构成的同位角、内错角、同旁内角。

(二)难点:在复杂图形中辨别同位角、内错角、同旁内角。

(三)教学疑点及解决办法:

正确理解新概念,引导学生讨论、归纳三类角的特征,并以练习加以巩固。

四、教法、学法

(一)教法:教学有法,但无定法,一节课中不能是单一的教法,在这节课中我主要采用的教法有:观察法、讲授法、启发教学法等。

(二)学法:以复习旧知识创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知。在这节课中使用的学法主要有:合作学习法、探究法、观察发现法、练习法、讨论法等。

北师大版七年级数学第一章教案最新文案3

一、教材分析

分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标 、重点和难点。首先来看一下本节课在教材中的地位和作用。

1、多项式除以单项式在整式的运算中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力,在解决问题的过程中了解数学的价值,发展"用数学"的信心。运算能力的培养主要是在初一阶段完成。多项式除以单项式作为整式的运算的一部分,它是整式运算的重要内容之一,它是整个初中代数的重要部分。

2、就第一章而言, 多项式除以单项式是本章的一个重点。整式的运算这一章,多项式除以单项式是很重要的一块,整式的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在整式范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此乘法的运算是本章的关键,而除法又是学生接触到的较复杂的整式的运算,学生能否接受和形成在整式的运算中转化思考方式及推理的方法等,都在本节中。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标 、重点和难点。

新课程标准是我们确定教学目标 ,重点和难点的依据。重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。

难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于 ,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。

二、教材处理

本节课是在前面学习了单项式除以单项式的基础上进行的,学生已经掌握同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等知识,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的课件引例,让学生自主参与,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程 的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

三、教学方法

在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程 中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程 中在掌握知识同时、发展智力、受到教育。

四、教学过程 的设计。

1、回顾与思考,通过单项式除以单项式法则的复习,完成四道单项式除以单项式的练习题,为本节课探索规律,概括多项式除以单项式的法则做好铺垫。

2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个尝试练习启发学生自主解答,使学生该过程中体会多项式除以单项式规律。由于采用了较灵活的教学手段,学生能够积极的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出多项式除以单项式的法则。

3、例题解析,通过课件生动形象的课件,引导学生尝试完成例题,加深对多项式除以单项式的法则的理解与应用。

4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用小组合作交流形式,使课堂气氛活跃,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

5、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。教学目标 :

1.理解和掌握多项式除以单项式的运算法则。

2.运用多项式除以单项式的法则,熟练、准确地进行计算.

3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

4.培养学生耐心细致、严谨的数学思维品质.

重点、难点:

(1)多项式除以单项式的法则及其应用.

(2)理解法则导出的根据。

课时安排: 一课时.

教具学具: 多媒体课件.

授课人及时间:关龙 二〇〇七年三月二十九日

教学过程 :

1.复习导入

(l)单项式除以单项式法则是什么?

(2)计算:

1)–12a5b3c÷(–4a2b)=

2)(–5a2b)2÷5a3b2 =

3)4(a+b)7 ÷ (a+b)3 =

4)(–3ab2c)3÷(–3ab2c)2 =

找规律:怎样寻找多项式除以单项式的法则?

尝试练习引入分析

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2.例题解析

例3 计算:见课本P49

(1) 尝试练习

(2) 提问:哪个等号是用到了法则?

(3) 在计算多项式除以单项式时,要注意什么?

注意:(l)先定商的符号;

(2)注意把除式(¸后的式子)添括号;

要求学生说出式子每步变形的依据.

(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

练习设计:

(1)随堂练习P50

(2)联系拓广P51

3.小结

你在本节课学到了什么?

(1)单项式除以单项式的法则

(2)多项式除以单项式的法则

正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清"约掉"与"消掉"的区别:"约掉"对乘除法则言,不减项;"消掉"对加减法而言,减项。

4.作业

P50 知识技能

5.综合练习(课件)

北师大版七年级数学第一章教案最新文案4

教学目的

通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

重点、难点

1.重点:方程的两种变形。

2.难点:由具体实例抽象出方程的两种变形。

教学过程

一、引入

上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

二、新授

让我们先做个实验,拿出预先准备好的天平和若干砝码。

测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?

学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。

问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?

让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?

把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?

由图(1)、(2)可归结为;

方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

让学生观察(3),由学生自己得出方程的第二个变形。

即方程两边都乘以或除以同一个不为零的数,方程的解不变:

通过对方程进行适当的变形.可以求得方程的解。

例1.解下列方程

(1)x-5=7 (2)4x=3x-4

(1)解两边都加上5,x,x=7+5 即 x=12

(2)两边都减去3x,x=3x-4-3x 即 x=-4

请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?

这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

注意:"移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

例2.解下列方程

(1)-5x=2 (2) x=

这里的变形通常称为"将未知数的系数化为1"。

以上两个例题都是对方程进行适当的变形,得到x=a的形式。

练习:

课本第6页练习1、2、3。

练习中的第3题,即第2页中的方程①先让学生讨论、交流。

鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

三、巩固练习

教科书第7页,练习

四、小结

本节课我们通过天平实验,得出方程的两种变形:

1.把方程两边都加上或减去同一个数或整式方程的解不变。

2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

五、作业

教科书第7—8页习题6.2.1第1、2、3。

北师大版七年级数学第一章教案最新文案5

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出"相等关系"。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得

1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授:

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

44x+64=328 (1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:"我今年45岁,几年以后你们的年龄是我年龄的三分之一?"

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的"三分之一"改为"二分之一",那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业 。教科书第3页,习题6.1第1、3题。

北师大版七年级数学第一章教案文案相关文章:

★ 新北师大七年级上册数学教案2021模板

★ 北师大版2020一年级数学上册教案文案

★ 北师大一年级数学教案上下最新文案

★ 北师大版七年级上册数学知识点必看

★ 一年级数学校本教案最新文案

★ 北师大版一年级数学上册动物乐园教案文案

★ 2021北师大版九年级数学教案文案

★ 北师大版一年级数学上册动物乐园教案5篇

★ 北师大数学一年级下册跳绳教案文案5篇

★ 2021新北师大一年级数学下册全册文案教案

相关思维导图模板

有理数北师大版数学初一上册教案思维导图

树图思维导图提供 有理数北师大版数学初一上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 有理数北师大版数学初一上册教案  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:7506cbaf73623d29d3f2caf6467203b2

有理数的加减混合运算北师大版数学初一上册教案思维导图

树图思维导图提供 有理数的加减混合运算北师大版数学初一上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 有理数的加减混合运算北师大版数学初一上册教案  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:f4fd391657e058b8925873da3170a7ab