在九年级数学上的教学中,理解函数的概念是关键,学生需要从简单的实际事例中提取函数关系并列出函数解析式,同时还需理解常量与变量的区别并确定自变量的取值范围,掌握解析式含有一个自变量的整式、分式、二次根式的函数的自变量取值范围的求法是必要的。在教学过程中,教师应当把握课堂出现的瞬间灵感,并及时记录,以备讲稿修改和提高课堂效果,在教学中,对于反映实际问题的函数关系,需要联系实际,具体问题具体分析,学生需要掌握用计算器求一个锐角的三角函数值。
九年级数学上教案例文思维导图模板大纲
课堂讲授过程中的瞬间灵感,非逻揖性发挥,是难能可贵的,它往往是决定课堂效果好坏的重要因素,教师应及时把握课堂出现的瞬间灵感,并及时记录,以备讲稿的修改。今天树图网在这里整理了一些最新九年级数学上教案例文,我们一起来看看吧!
教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求函数值,并体会自变量与函数值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.
5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解函数的意义,会求自变量的取值范围及求函数值.
教学难点:函数概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x的函数.
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n
y是函数,n是自变量
2、 ,n是函数,a是自变量.
(二)讲授新课
刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列函数中自变量x的取值范围.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意实数, 与 都有意义.
(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .
同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .
第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零. 的被开方数是 .
同理,第(6)小题 也是二次根式, 是被开方数,
解:(1)全体实数
(2)全体实数
(3)
(4) 且
(5)
(6)
小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.
但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用"或者"联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清"且"与"或".说明这里 与 是并且的关系.即2与-1这两个值x都不能取.
例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.
(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;
(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.
解:(1)
(x是正整数,
(2)若变速车的辆次不小于25%,但不大于40%,
则
收入在1225元至1330元之间
总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.
对于函数 ,当自变量 时,相应的函数y的值是 .60叫做这个函数当 时的函数值.
例3、求下列函数当 时的函数值:
(1) (2)
(3) (4)
解:1)当 时,
(2)当 时,
(3)当 时,
(4)当 时,
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有确定的值与之对应.以此加深对函数的理解.
(二)小结:
这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.
作业:习题13.2A组2、3、5
一、教学目标
1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。
2.经历利用三角函数知识解决实际 问题的过程,促进观察、分析、归纳、交流等能力的发展。
3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习 的好奇 心,培养学生与他人合作交流的意识。
二、教材分析
在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30°, 45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提 出问题、分析问题、探究解决方法直至最终解决问题的过程。
三、学校及学生状况分析
九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。
学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。
四、教学设计
(一)复习提问
1.梯子靠在墙 上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?
学生活动:根据题意,求出数值。
2.在生活中,梯子与地面的夹角总是60°吗?
不是,可以出现各种角度,60°只是一种特殊现象。
图1(二)创设情境引入课题
1如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。已知缆车的路线与平面的夹角为∠A=16 °,那么缆车垂直上升的距离是多少?
哪条线段代表缆车上升的垂直距离?
线段BC。
利用哪个直角三角形可以求出BC?
在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。
你知道sin 16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。 那么,怎样用科学计算器求三角函数呢?
用科学计算器求三角函数值,要用sin cos和tan键。教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。按键顺序显示结果sin 16°sin16=sin 16°=0275 637 355
学生活动:按表中所列顺序求出sin 16°的值。
你能求出cos 42°,tan 85°和sin 72°38′25″的值吗?
学生活动:类比求sin 16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):
按键顺序显示结果cos 42°cos42 =cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S
38D′M′S2
5D′M′S=sin 72°38′25″→
0954 450 321
师:利用科学计算器解决本节一开始的问题。
生:BC=200sin 16°≈5212(m)。
说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。
(三)想一想
师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了 200 m,缆车由点B到达点D的行驶路线与 水平面的夹角为∠β=42°,由此你还能计算什么?
学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)互相补充并在这个过程中加深对三角函数的认识。
(四)随堂练习
1.一个人由山底爬到山顶,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(结果精确到0.1 m)。
2.如图2,∠DAB=56°,∠CAB=50°,AB=20 m,求图中避雷针CD的长度(结果精确到0.01 m)。
图2图3
(五)检测
如图3,物华大厦离小伟家60 m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到01 m)。
说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。
(六)小结
学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。
(七)作业
1.用计算器求下列各式的值:
(1)tan 32°;(2)cos 2453°;(3)sin 62°11′;(4)tan 39°39′39″。
图42如图4,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1 m)。
五、教学反思
1.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的发展。
2.教师作为学生学习的组织者、引导者、合作者和帮助者,依据教材特点创设问题情境,从学生已有的知识背景和活动经验出发,帮助学生取得了成功。
教材分析
本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学习平面直角坐标系的学习做好准备。
学情分析
本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。
教学目标
理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。
教学重点和难点
重点:方位角的判别与应用
难点:方位角的画法及变式题
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)
教学环节教师活动预设学生行为设计意图
一 、创设情境,导入新课
二、讲授新课
三、巩固练习
四、课时小结五、布置作业 由四面八方这个成语引出学生对八个方位的理解
1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。
2.师示范方位角的画法
3.出示补充例题,引对学生通过小组合作完成。 思考并回答老师提出的问题
生观察图并理解老师的讲解。
生观察并独立完成书中的例题
生先独立思考然后与同学合作完成。 激发学生的学习兴趣
通辽具体图形使学生初步认识方位角的表示方法。
使学生通辽具体操作掌握画方位角的方法
进一步掌握方位角的有关知识,达到知识提升。
板书设计
4.3.3余角和补角(二)——方位角
学生学习活动评价设计
我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。
教学反思
本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学习平面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。
教学目标
1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。
2、理解一元二次方程的定义,能识别一元二次方程。
3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。
重点难点
重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。
难点:把实际问题转化为一元二次方程的模型。
教学过程
(一)创设情境
前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。
1、展示课本P.2问题一
引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。
(35-2x)2=900①
2、展示课本P.2问题二
引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?
通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程
2t+×0.01t2=3t②
3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:
4x2-140x+32③
0.01t2-2t=0④
(二)探究新知
1、观察上述方程③和④,启发学生归纳得出:
如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:
ax2+bx+c=0,(a,b,c是已知数且a≠0),
其中a,b,c分别叫作二次项系数、一次项系数、常数项。
2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。
(三)讲解例题
例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。
[解]去括号,得3x2+5x-12=x2+4x+4,
化简,得2x2+x-16=0。
二次项系数是2,一次项系数是1,常数项是-16。
点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。
例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?
(1)2x+3=5x-2;(2)x2=25;
(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。
[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。
点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。
(四)应用新知
课本P.4,练习第3题,
(五)课堂小结
1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。
2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。
3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。
(六)思考与拓展
当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?
当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。
布置作业
课本习题1.1中A组第1,2,3题。
教学后记:
教学目标
1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、会用因式分解法解某些一元二次方程。
3、进一步让学生体会"降次"化归的思想。
重点难点
重点:,掌握用因式分解法解某些一元二次方程。
难点:用因式分解法将一元二次方程转化为一元一次方程。
教学过程
(一)复习引入1、提问:
(1)解一元二次方程的基本思路是什么?
(2)现在我们已有了哪几种将一元二次方程"降次"为一元一次方程的方法?
2、用两种方法解方程:9(1-3x)2=25
(二)创设情境
说明:可用因式分解法或直接开平方法解此方程。解得x1=,,x2=-。
1、说一说:因式分解法适用于解什么形式的一元二次方程。
归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、想一想:展示课本1.1节问题二中的方程0.01t2-2t=0,这个方程能用因式分解法解吗?
(三)探究新知
引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。
把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0
解得tl=0,t2=200。
t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。
(四)讲解例题
1、展示课本P.8例3。
按课本方式引导学生用因式分解法解一元二次方程。
2、让学生讨论P.9"说一说"栏目中的问题。
要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。
3、展示课本P.9例4。
让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。
(五)应用新知
课本P.10,练习。
(六)课堂小结
1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。
2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。
(七)思考与拓展
用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。
(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。
[解](1)原方程可变形为2(3x-2)+(3x-2)(x+1)=0,
(3x-2)(x+3)=0,3x-2=0,或x+3=0,
所以xl=,x2=-3
(2)去括号、整理得x2+2x-3=12,x2+2x-15=0,
(x+5)(x-3)=0,x+5=0或x-3=0,
所以x1=-5,x2=3
先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。
布置作业
教学后记:
★ 最新九年级数学上册教案例文
★ 九年级数学上册圆教案最新范文
★ 初三年级数学教学设计5篇范文
★ 九年级数学圆的教案5篇最新范文
★ 初中数学人教版教案范文五篇
★ 新人教版九年级数学概率教案最新范文
★ 初中数学教学设计教案模板范文
★ 九年级数学树状图教案2021范文
★ 九年级数学上册二次函数教案2021模板
★ 九年级数学旋转教案5篇最新
树图思维导图提供 九年级数学上册教案例文 在线思维导图免费制作,点击“编辑”按钮,可对 九年级数学上册教案例文 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:a308a10b01bbdad24929967821f5e9a4
树图思维导图提供 初二数学上教案例文 在线思维导图免费制作,点击“编辑”按钮,可对 初二数学上教案例文 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:b88426c58ed3739b1f33a6998e2a3d96