关于高考数学知识点思维导图,知识点包含:1.反比例函数的定义和图像性质。
2.反比例函数图像上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形面积为|k|。
3.对于双曲线y=k,若在分母上加减任意一个实数,相当于将双曲线图象左右平移一个单位。
4.集合/的包含关系、相等关系和空集的定义。
5.函数/值域的求解方法,包含直接法、换元法、反函数法等。
6.函数/最值与值域的区别和联系,和在实际问题中的应用。
7.函数/的零点定义和求解方法。
关于高考数学知识点的思维导图可以帮助我们更好的梳理和理解这些知识点,在高考中取得更好的成绩。在学习反比例函数时,需要注意其定义和图像性质,和与坐标轴的关系,对于集合的包含关系和相等关系,要理解其定义,并能运用到解题中,在求函数的值域时,可以运用不同的方法,如直接法、换元法和反函数法。根据具体情况选择合适的方法,函数的最值与值域的求解方法基本上是相同的,只是提问的角度不同,对于实际问题的应用,需要关注实际意义对自变量的制约以求得正确的最值。在方程的根与函数的零点中,需要理解函数的零点概念,并能运用到具体问题的求解中,通过掌握这些知识点,可以更好的应对高考数学的考试。
关于高考数学知识点思维导图模板大纲
关于高考数学知识点梳理
人生要敢于理解挑战,经受得起挑战的人才能够领悟人生非凡的真谛,才能够实现自我无限得超越,才能够创造魅力永恒的价值。下面小编为大家带来关于高考数学知识点,希望对您有所帮助!
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
1."包含"关系—子集
注意:有两种可能
(1)A是B的一部分,
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2."相等"关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}"元素相同"
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件"一正二定三相等"有时需用到平方等技巧.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用"△≥0"求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为"工程造价最低","利润"或"面积(体积)(最小)"等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0
抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱侧面积s=c_h斜棱柱侧面积s=c_h
正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h
圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2
圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l
弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r
锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h
斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长
柱体体积公式v=s_h圆柱体v=pi_r2h
树图思维导图提供 2017高考数学知识点总结:集合知识点汇总 在线思维导图免费制作,点击“编辑”按钮,可对 2017高考数学知识点总结:集合知识点汇总 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:9edef552cc30cae336899a8ccc6fbf3a
树图思维导图提供 2017高考数学知识点:数学选择与填空必考知识点 在线思维导图免费制作,点击“编辑”按钮,可对 2017高考数学知识点:数学选择与填空必考知识点 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:3ccb95f4d9903fdc805ded53cbe8943e