十字交叉法作为一个数学运算技巧,却在资料分析中扎稳了脚跟,省考几乎每年都会进行考察,甚至在不同题型中以不同方式考查不止一次,因此,它是每个考生都必须掌握的一个技巧。
树图思维导图提供 2022年国考行测资料分析:十字交叉法 在线思维导图免费制作,点击“编辑”按钮,可对 2022年国考行测资料分析:十字交叉法 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:fe8158ed1b644f7db816cc3b6fe055e2
2022年国考行测资料分析:十字交叉法思维导图模板大纲
十字交叉法作为一个数学运算技巧,却在资料分析中扎稳了脚跟,省考几乎每年都会进行考察,甚至在不同题型中以不同方式考查不止一次,因此,它是每个考生都必须掌握的一个技巧。
结论一:整体平均数处在部分平均数之间,即部分平均数有些比整体平均数大,有些比整体平均数小。
结论二:整体平均数靠近"分母"较大的那个分平均。
结论三:求部分量分母之比
1.解决问题:求部分量分母之比
例题:2018年某市中学生有13.2万人,增长率1.2%,其中女生人数增长了0.8%,男生人数增长了1.5%。
问:2017年该市中学生男生人数与女生人数的比例是?
A.4:3 B.3:4 C.5:5 D.5:6
解析:题目中的"平均数"概念是增长率,全体中学生人数和女生人数男生人数构成了整体和部分间的关系。女生增长率和男生增长率的分母分别是2017年女孩女孩人生和2017年男生人数,因此题干问题其实就是在求两个分量平均数的分母之比。
类似于上面分析,如果我们考试的时候题目给出其他"平均数"概念,其计算公式不一样,对于分分母也不一样,则问题问法也不同。如查考人均收入,由总收入除以总人数计算得来,问两个分量总人数之比即为分量分母之比。
2.具体结论:求部分量分母之比
十字交叉法的第三个结论,是用来做具体计算。结论意思是说,如果我们要求两个分量平均数的分母之前,如果没有其他具体量可以用的时候,就可以利用总量平均数和分量平均数来求得。通过上述结论我们发现,具体应用时,要用总量平均数和分量平均数做差,差之比即为答案。
例题:2018年某市中学生有13.2万人,增长率1.2%,其中女生人数增长了0.8%,男生人数增长了1.5%。
问:2017年该市中学生男生人数与女生人数的比例是?
A.4:3 B.3:4 C.5:5 D.5:6
解析:答案选A。
值得一提的是,上面的例题,答案是比例的形式。这个题目问题还可以修改为休2017男男生人数是女生人数的几倍,比例转化为倍数,答案为1.33倍。考点其实就是基期倍数,因为题目中没有给出2018年女生和男生人数,所以没有办法按照基期倍数的公式求解,那么就转而利用增长率的关系求解。理论上来说,两种求解方式得结果应该相同,但是实际上,由于资料分析数据的不准确性,经常导致两种求解方式的结果不同。轮到考试的时候,这两种思路用哪个主要看已知条件给了什么。如果给了现期部分量,可以优先用基期倍数的公式,否则就用十字交叉法的结论三来求解。
树图思维导图提供 904名中国成年人第三磨牙相关知识、态度、行为和病史的横断面调查 在线思维导图免费制作,点击“编辑”按钮,可对 904名中国成年人第三磨牙相关知识、态度、行为和病史的横断面调查 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:10b9a8a2dd2fb4593f8130ef16c320fc
树图思维导图提供 销售经理半年规划 在线思维导图免费制作,点击“编辑”按钮,可对 销售经理半年规划 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:e614d6bcf03e9318109240a18697c5d1