TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学高中数学向量解题技巧思维导图

高中数学向量解题技巧思维导图

  收藏
  分享
免费下载
免费使用文件
好想你 浏览量:92023-04-04 15:39:15
已被使用0次
查看详情高中数学向量解题技巧思维导图

高中数学向量解题技巧思维导图,包含如下知识点:向量公式、三角函数公式、易错点分析,向量公式包含单位向量的计算、向量坐标计算、向量点积计算,三角函数公式包含万能公式、辅助角公式、三倍角公式和积化和差公式,这些公式对于解题非常重要,易错点分析部分指出了数0有区别,模为0的向量不是没有方向,而是方向不定,要引起重视,希望这些学习资料能够帮助大家更好的掌握高中数学向量解题技巧。

思维导图大纲

高中数学向量解题技巧思维导图模板大纲

各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。下面是树图网给大家整理的一些高中数学向量解题技巧的学习资料,希望对大家有所帮助。

高二数学向量重点学习方法

高二数学向量重点-向量公式:

1.单位向量:单位向量a0=向量a/|向量a|

2.P(x,y)那么向量OP=x向量i+y向量j

|向量OP|=根号(x平方+y平方)

3.P1(x1,y1)P2(x2,y2)

那么向量P1P2={x2-x1,y2-y1}

|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}

向量a.向量b=|向量a|.|向量b|.Cosα=x1x2+y1y2

Cosα=向量a.向量b/|向量a|.|向量b|

(x1x2+y1y2)

=————————————————————

根号(x1平方+y1平方).根号(x2平方+y2平方)

5.空间向量:同上推论

(提示:向量a={x,y,z})

6.充要条件:

如果向量a⊥向量b

那么向量a.向量b=0

如果向量a//向量b

那么向量a.向量b=±|向量a|.|向量b|

或者x1/x2=y1/y2

7.|向量a±向量b|平方

=|向量a|平方+|向量b|平方±2向量a.向量b

=(向量a±向量b)平方

高二数学向量重点-三角函数公式:

1.万能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

2.辅助角公式

asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

cosr=a/[(a^2+b^2)^(1/2)]

sinr=b/[(a^2+b^2)^(1/2)]

tanr=b/a

3.三倍角公式

sin(3a)=3sina-4(sina)^3

cos(3a)=4(cosa)^3-3cosa

tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

4.积化和差

sina.cosb=[sin(a+b)+sin(a-b)]/2

cosa.sinb=[sin(a+b)-sin(a-b)]/2

cosa.cosb=[cos(a+b)+cos(a-b)]/2

sina.sinb=-[cos(a+b)-cos(a-b)]/2

5.积化和差

sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

高考数学平面向量易错点分析

1.数0有区别,0的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

2.数量积与两个实数乘积的区别:

在实数中:若a≠0,且ab=0,则b=0,但在向量的数量积中,若a≠0,且a?b=0,不能推出b=0。

3.a?b<0是向量和向量夹角为钝角的必要而不充分条件。

高二数学必修二知识点:平面向量

1.基本概念:

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2.加法与减法的代数运算:

(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);

3.实数与向量的积:实数与向量的积是一个向量。

(1)||=||·||;

(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.

两个向量共线的充要条件:

(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.

(2)若=(),b=()则‖b.

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.

4.P分有向线段所成的比:

设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。

当点P在线段上时,>0;当点P在线段或的延长线上时,<0;

分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.

5.向量的数量积:

(1).向量的夹角:

已知两个非零向量与b,作=,=b,则∠AOB=()叫做向量与b的夹角。

(2).两个向量的数量积:

已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.

其中|b|cos称为向量b在方向上的投影.

(3).向量的数量积的性质:

若=(),b=()则e·=·e=||cos(e为单位向量);

⊥b·b=0(,b为非零向量);||=;

cos==.

(4).向量的数量积的运算律:

·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.

高中数学向量解题技巧相关文章:

★ 高考数学常考题型的解题思路 考生要掌握哪些公式

★ 高考数学答题技巧及方法2021

★ 高中数学的学习方法

★ 2021年高考数学五种题型秒杀方法

★ 中考数学各种题型的解题技巧归纳

★ 中考数学压轴题解题切入秘诀解题技巧2021

★ 中考数学压轴题方法及解题技巧与压轴题解法2021

★ 数学各题型解题方法和技巧备考2021中考指导

★ 高中数学与理科学习技巧2021

★ 高中数学教学成果总结2021

相关思维导图模板

高中数学解题技巧思维导图

树图思维导图提供 高中数学解题技巧 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学解题技巧  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:c4f197d86398e9319f2e9acf3c473b8b

高中数学解题套路技巧思维导图

树图思维导图提供 高中数学解题套路技巧 在线思维导图免费制作,点击“编辑”按钮,可对 高中数学解题套路技巧  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:d7a522680c356a332f029f389e3ca28a