TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学高考数学重要的知识点思维导图

高考数学重要的知识点思维导图

  收藏
  分享
免费下载
免费使用文件
同游生死 浏览量:62023-04-04 16:39:21
已被使用0次
查看详情高考数学重要的知识点思维导图

高考数学重要的知识点思维导图,包含了以下知识点:集合的交、并、补运算,补集思想,命题的区别和相互关系,函数定义域优先原则,函数奇偶性判断方法,函数单调性证明方法,函数值域需要先求定义域,对数函数问题注意限制条件,利用二次函数求最值,均值不等式求最值的技巧,绝对值不等式的解法及几何意义。在应用这些知识点时,需要特别注意空集情况与定义域范围,和未明确题目所包含是二次方程、函数还是不等式的情况,掌握这些知识,对于高考数学有着重要的作用。

思维导图大纲

高考数学重要的知识点思维导图模板大纲

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是树图网给大家整理的一些高考数学重要的知识点,希望对大家有所帮助。

高考数学专题复习知识点

1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道"否命题"与"命题的否定形式"的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号"∪"和"或";单调区间不能用集合或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17."实系数一元二次方程有实数解"转化时,你是否注意到:当时,"方程有解"不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

18.利用均值不等式求最值时,你是否注意到:"一正;二定;三等".

19.绝对值不等式的解法及其几何意义是什么?

人教版高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

人教版高考数学重要知识点

(1)先看"充分条件和必要条件"

当命题"若p则q"为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与"p=>q"等价的逆否命题是"非q=>非p"。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看"充要条件"

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的"等价于"这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。"充要条件"的含义,实际上与"等价于"的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如"两组对边分别平行的四边形叫做平行四边形"这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

"充要条件"有时还可以改用"当且仅当"来表示,其中"当"表示"充分"。"仅当"表示"必要"。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的"结论"都可作为必要条件。

高考数学所有知识点相关文章:

★ 高考数学考点归纳

★ 高考数学备考总复习知识点归纳

★ 高三最全数学知识点2021

★ 高考数学必考知识点归纳总结2021

★ 高考数学实用知识点总结2021

★ 高三数学重要知识点整理总结2021

★ 2021高考数学备考知识点归纳

★ 高考数学备考必修必考知识点归纳及总结2021

★ 高考数学实用知识点总结分享2021

相关思维导图模板

高考数学重要课本知识点思维导图

树图思维导图提供 高考数学重要课本知识点 在线思维导图免费制作,点击“编辑”按钮,可对 高考数学重要课本知识点  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:2a13465dcfd35fb5c4708e5391653edd

高考理科数学重要知识点归纳思维导图

树图思维导图提供 高考理科数学重要知识点归纳 在线思维导图免费制作,点击“编辑”按钮,可对 高考理科数学重要知识点归纳  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:d4b4a051c05a87ba117bec00fa053225