关于中考数学的知识点归纳思维导图,主要介绍了中考数学需要掌握的几个知识点,其中第一单元是位置与方向,介绍了生活空间中的八个方向,第二单元是除数是一位数的除法,讲解了除法的验算方法和估算方法,第三单元是统计,介绍了平均数和如何确定数据中一个格表示的单位。第四单元是年月日,介绍了月份天数、闰年、平年及24小时计时法,最后一单元是两位数乘两位数,解释了口算整十数乘整百数的方法,以上知识点都是中考数学的基础知识点,学好这些知识点对于备战中考非常重要。
关于中考数学的知识点归纳思维导图模板大纲
在日常的学习中,不管我们学什么,都需要掌握一些知识点,知识点在教育实践中,是指对某一个知识的泛称。相信很多人都在为知识点发愁,这里给大家分享一些关于中考数学知识点,方便大家学习。
第一单元 位置与方向
1、 生活空间中的八个方向:东、东南、南、西南、西、西北、北、东北
2、 地图通常都是按上北下南左西右东绘制的。
3、 东与西相对。南与北相对。
4、 观测点不同,同一物体所在的位置可能会不同。
5、 描述行走路线时,要说明方向与距离。
第二单元 除数是一位数的除法
1、 除法的验算:商×除数=被除数
有余数除法的验算:商×除数+余数=被除数
2、 0除以任何不是0的数都得0。
3、 0不可以作除数。
4、 除法的估算方法是多样的,通常我们将被除数(三位数)看成一个接近它的整百整十数,除数(一位数)不变,然后计算。或者按照乘法口诀把被除数估成一个合适的数,再计算。
5、 除数是一位数的除法法则:
①从被除数的最高位除起,如果被除数的百位比除数小,再用前两位数一起去除。
②除到被除数的哪一位,就把商写在哪一位上面。
③每求出一位商,余下的数必须比除数小。
第三单元 统计
1、 平均数:就是一组数据的和除以这组数据的个数所得的商。
2、 平均数=总数量÷总份数。
3、 一个格是表示1个单位还是2个、5个、10个甚至更多单位,要根据数据的具体大小而定。
4、 平均数能较好地反映一组数据的总体情况。
第四单元 年月日
1、 一年有12个月。一月、三月、五月、七月、八月、十月、十二月每月有31天,称为大月;四月、六月、九月、十一月每月30天,称为小月。
2、 儿歌:一三五七八十腊,三十一天永不差;四六九冬三十天,平年二月二十八;每隔四年闰一日,闰年二月把一加。
3、平年二月28天,全年365天;闰年二月29天,全年366天。
4、 平年或闰年的判断方法:公历年份是4的倍数的一般都是闰年;公历年份是整百数的,必须是400的倍数才是闰年。
5、 24时计时法:在一日(天)里,钟表上时针正好走两圈,共24小时。所以经常采用从0时到24时的计时法,通常叫做24时计时法。
6、 经过时间:可以通过观察钟面和用线段表示来计算出简单的经过时间。
第五单元 两位数乘两位数
1、 口算整十数乘整百数的方法:
(1)将整十数十位上的数与整百数百位上的数相乘。
(2)在乘得的积的末尾添三个0。
2、 两位数乘整百数的口算方法:
(1)用两位数乘整百数百位上的数。
(2)在乘得的积的末尾添上两个0。
3、两位数乘两位数的估算方法:
(1)将两个或两位数分别看成接近它们的整十数或整百数(一百)。
(2)再将两个整十数或整百数相乘。
4、 两位数乘两位数的笔算方法(不进位):
(1)先用第二个因数个位上的数与第一个因数相乘,再用第二个因数十位上的数与第一个因数相乘,所得的积食表示多少个十,所以末位数要写在十位上。
(2)将乘得的积加起来求出两位数乘两位数的积。
5、 两位数乘两位数的笔算方法(进位):
(1)先用第二个因数个位上的数与第一个因数相乘,再用第二个因数十位上的数与第一个因数相乘,这一步乘得的积表示多少个十,所以末位数应在十位上。哪一位相乘的积满十就向前一位进1。
(2)将两次乘得的积相加就是两位数乘两位数的积。
第六单元 面积
1、 面积:物体表面或封闭图形的大小,就是它们的面积。
2、 常用的面积单位:平方厘米、平方分米、平方米等。
3、 边长1厘米的正方形,面积是1平方厘米;
边长1分米的正方形,面积是1平方分米;
边长1米的正方形,面积是1平方米。
4、 1平方米=100平方分米; 1平方分米=100平方厘米;
1平方米=10000平方厘米;
5、测量土地的面积时,常常要用到更大的面积单位:公顷,平方千米
边长是100米的正方形,面积是1公顷。
边长是1千米的正方形,面积是1平方千米
6、 1平方千米=100公顷 1公顷=10000平方米;
7、 长方形的面积=长×宽;正方形的.面积=边长×边长。
第七单元 小数的初步认识
1、 以米为单位的小数的含义:
(1)小数点左边的数表示多少米。
(2)小数点右边的数依次表示几分米、几厘米。
2、 以元为单位的小数的含义:
(1)几元就在小数点的左边写几。
(2)几角就在小数点右边第一位上写几,几分就在小数点右边第二位上写几,哪个数位上一个单位也没有,就在那个数位上写"0"占位,最后写上单位名称"元"。
3、 小数大小的比较方法:
(1)先比较小数点左边的部分(整数部分),这部分数大的这个小数就大。
(2)如果整数部分大小相同,就看小数点右边第一位上的数,这个数位上的数大这个小数就大。
(3)如果小数点右边第一位上的数也相同,就看小数点右边第二位上的数,以此类推。
4、 用竖式计算小数的加法(一位小数):
(1)两个加数的相同数位一定要对齐(小数点对齐)。
(2)先将小数点右边第一位上的数相加,满十进一。
(3)和的小数点要和两个加数的小数点对齐。
(4)再将小数点左边的数相加,这部分数按整数的加法来加。
5、 用竖式计算一位小数减法的方法:
(1)被减数和减数的相同数位要对齐(小数点对齐)。
(2)从小数点右边第一位开始减起(从右到左),不够减时从前一位退一当十再减。
(3)差的小数点要和被减数、减数的'小数点对齐。
第八单元 解决问题
1、 分析题中的数量关系,明确先求什么,再求什么。
2、 每份个数×份数=总数(也就是求几个几是多少用乘法计算)。
总数÷每份个数=份数 总数÷份数=每份个数
3、 含有乘、除法的综合算式从左往右计算。
4、 含有乘法(除法)、加法(减法)的综合算式,先算乘(除)法再算加(减)法。
第九单元 数学广角
1、 集合:在数学中,集合是指某一类事物组成的整体。
2、 等量代换:是指一个量用与它相等的量去代替。
3、 计算两个队的总人数,不能简单地将两个队的人数相加,要将重复的人数从总数中减去。
考点1:确定事件和随机事件
考核要求:
〔 1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率
考核要求:
〔 1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
〔 2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
〔1〕在给可能性的大小排序前可先用"一定发生"、"很有可能发生"、 "可能发生"、"不太可能发生"、"一定不会发生"等词语来表述事件发生的可能性的大小;
〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点3:等可能试验中事件的概率问题及概率计算
考核要求
〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
〔2〕会用枚举法或画"树形图"方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。
〔1〕计算前要先确定是否为可能事件;
〔2〕用枚举法或画"树形图"方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点4:数据整理与统计图表
考核要求:
〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点5:统计的含义
考核要求:
〔1〕知道统计的意义和一般研究过程;
〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点6:平均数、加权平均数的概念和计算
考核要求:
〔1〕理解平均数、加权平均数的概念;
〔2〕掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点7:中位数、众数、方差、标准差的概念和计算
考核要求:
〔 1〕知道中位数、众数、方差、标准差的概念;
〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
〔2〕求中位数之前必须先将数据排序。
考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:
〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:
〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的意计算及其应用,并掌握其概念和计算方法;
〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
单靠"死"记还不行,还得"活"用,姑且称之为"先死后活"吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到"一石多鸟"的效果。研究解决有关的实际生活中问题,然后作出合理的解决。
一般说来,"教师"概念之形成经历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕 ?春秋谷梁传疏?曰:"师者教人以不及,故谓师为师资也"。
这儿的"师资",其实就是先秦而后历代对教师的别称之一。
韩非子也有云:"今有不才之子?…师长教之弗为变〃其"师长〃当然也指教师。这儿的"师资"和"师长"可称为"教师"概念的雏形,但仍说不上是名副其实的"教师",因为"教师"必须要有明确的传授知识的对象和本身明确的职责。
导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
(一)导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义
(二)导数第二定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义
(三)导函数与导数
如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号 (3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)0的解集与定义域的交集的对应区间为增区间; f(x)0的解集与定义域的交集的对应区间为减区间
知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。
非负数
非负数大于或等于0。
非负数中含有有理数和无理数。
非负数的和或积仍是非负数。
非负数的和为零,则每个非负数必等于零。
非负数的积为零,则至少有一个非负数为零。
非负数的绝对值等于本身。
常见的非负数
实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。
常见表现形式
非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。
知识归纳:任何一个非负数乘以-1都会得到一个非正数。
圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:
(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
★ 中考数学必考知识点
★ 2022中考数学重点知识点归纳大全
★ 中考的数学知识点必备2021
★ 2021中考数学知识考点梳理
★ 中考数学知识点归纳必看2021
★ 中考数学基础知识点必备2021
★ 2021中考数学重点知识点归纳
★ 中考数学的知识点整理2021
★ 初中数学一次函数知识点总结
★ 2021吉林中考数学考点梳理
树图思维导图提供 初三中考数学知识点归纳 在线思维导图免费制作,点击“编辑”按钮,可对 初三中考数学知识点归纳 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:0a10f121457cf3ed625f71c8442acccc
树图思维导图提供 初中中考数学知识点归纳 在线思维导图免费制作,点击“编辑”按钮,可对 初中中考数学知识点归纳 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:d3fbc7de65c91ceaa04220a105906e53