本模板介绍七年级上册数学教案思维导图的相关知识点,包含目标、整式的加减运算、揭示如何进行整式的加减运算、拓展练习、化简求值计算的步骤、数轴概念与有理数的对应关系。学生需要掌握数轴的概念,理解数轴上的点与有理数的对应关系,能够正确地画出数轴,并能够用数轴上的点表示给定的有理数,在整式的加减运算中,需要进行去括号、合并同类项。并综合应用“去括号”和“合并同类项”法则,还需要掌握化简求值的计算步骤,通过本教案的学习,学生能够感受到在特定条件下数与形是可以相互转化的,体验生活中的数学。
七年级上册数学教案思维导图模板大纲
时间过得飞快,我们又将迎来新的教学工作,是不是需要好好写一份教学计划呢?很多人都十分头疼怎么写一份精彩的教学计划,这里给大家分享一些关于七年级上册数学教案,方便大家学习。
一、目标
1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)
2.教师揭示以上这些工作实际上是在进行整式的加减运算
3.回顾以上过程思考:整式的加减运算要进行哪些工作?
生1:"去括号"
生2:"合并同类项"
师生小结:整式的加减实际上是"去括号"和"合并同类项"法则的综合应用
二、揭示如何进行整式的加减运算
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二例2求2a2-4a+1与-3a2+2a-5的差.
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展练习
(1)求多项式2x-3+7与6x-5-2的和.
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)
(2)(-3x2–x+2)+(4x2+3x-5)(3)(4a2-3a)+(2a2+a-1)
(4)(x2+5x–2)-(x2+3x-22)(5)2(1-a+a2)-3(2-a–a2)
4.教学例3
先化简下式,再求值:
(做此类题目应先与学生一起探讨一般步骤:
(1)去括号。
(2)合并同类项。
(3)代值)
解:5(3a2b–ab2)-4(-ab2+3a2b),其中=-2,=3
=15a2b–5ab2+4ab2-12a2b)
=3a2b–ab2
三、小结
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.进行化简求值计算时
(1)去括号。
(2)合并同类项。
(3)代值
3.通过本节课的学习你还有哪些疑问?
四、布置作业
习题4.52.(3);4.(2);5.。
五、课后反思
省略
教学目标
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动)设计理念
设置情境
引入课题教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答"到";口令为该同学的名字时,该同学要报出他对应的"数字",如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解
寻找规律
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业
1,必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
《余角和补角》第2课时教案
教学目标:
知识与能力
能正确运用角度表示方向,并能熟练运算和角有关的问题。
过程与方法
能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。
情感、态度、价值观
能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。
教学重点:方位角的表示方法。
教学难点:方位角的准确表示。
教学准备:预习书上有关内容
预习导学:
如图所示,请说出四条射线所表示的方位角?
教学过程;
一、创设情景,谈话导入
在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?
二、精讲点拔,质疑问难
方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如"北偏东30°","南偏西40°"等,方位角不能以正东,正西为基准,如不能说成"东偏北60°,西偏南50°"等,但有时如北偏东45°时,我们可以说成东北方向。
三、课堂活动,强化训练
例1如图:指出图中射线OA、OB所表示的方向。
(学生个别回答,学生点评)
例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?
(小组讨论,个别回答,教师总结)
例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。
(教师分析,一学生上黑板,学生点评)
四、延伸拓展,巩固内化
例4某哨兵上午8时测得一艘船的位置在哨所的.南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。
(1)请按比例尺1:200000画出图形。
(独立完成,一同学上黑板,学生点评)
(2)通过测量计算,确定船航行的方向和进度。
(小组讨论,得出结论,代表发言)
五、布置作业、当堂反馈
练习:请使用量角器、刻度尺画出下列点的位置。
(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。
(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。
(3)点C在点O的西北方向上,同时在点B的正北方向上。
作业:书P1407、9
《等式与方程》教案
教学目标
1、学生掌握方程的定义以及等式与方程的区别;
2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。
教学重点
检验方程的解的方法
教学难点
区分等式与方程;等式与恒等式;恒等式与方程。
版面设计
方程与方程的解
一、等式与恒等式:
二、方程与整式方程:
三、方程的解与方程的根:
教学设计
一、复习引入:
⑴猜年龄:
将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。
⑵找规律:
如果设小明的年龄为x岁,那么乘以2再减去5就是2x-5,所以得到方程(equation):2x-5=21
二、新课传授:
1.等式与恒等式:
①等式:
像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号=来表示相等关系的式子,叫做等式。
等式左边的式子叫做等式的左边;
等式右边的式子叫做等式的右边;
等式的一般形式是:A=B
②恒等式:
像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。
2.方程与整式方程:
①方程:
这种含有未知数的等式叫做方程。
②整式方程:
方程的两边都是整式时,称为整式方程。
【练习】:课后1、2两题(指定学生口答)
1.方程的解与方程的根:
①方程的解:
能使方程左、右两边的值相等的未知数的值叫做方程的解;
②一元方程:
只含有一个未知数的方程称为一元方程;
一元方程的解也叫做方程的根。
2.一元一次方程:
只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。
例检验下列各数是不是方程7x+1=10-2x的解:
⑴x=1;⑵x=-2。
解:⑴将x=1分别代入方程的左、右两边,得
左边=71+1=8,
右边=10-21=8,
∵左边=右边,
x=1是方程7x+1=10-2x的解。
⑵将x=-2分别代入方程的左、右两边,得
左边=7(-2)+1=-13,
右边=10-2(-2)=14,
∵左边右边,
x=-2不是方程7x+1=10-2x的解。
三、作业:
课后习题
同步练习
教学目标
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解"集合"的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为"正数"和"负数"或"零"三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为"正整数",而5.1不是整个的数,称为"正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是"正整数,零,负整数,正分数,负分数,"。
按照书本的说法,得出"整数""分数"和"有理数"的概念.
看书了解有理数名称的由来.
"统称"是指"合起来总的名称"的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称"数集",所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
★ 七年级人教版数学教案5篇
★ 七年级数学教学设计范例5篇
★ 七年级数学教师必备教案范本5篇
★ 最新数学七年级上册21教案范文
★ 最新七年级上册数学教案北师大版范文
★ 北师大版七年级上册数学教案最新例文
★ 华师七年级上册数学教案最新文案
★ 最新七年级上册数学教案华东师大例文
★ 最新数学七年级上册32教案文案
★ 湘教版数学七年级上册教案最新范文
树图思维导图提供 有理数的乘方教案人教版数学七年级上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 有理数的乘方教案人教版数学七年级上册教案 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:6ce59e8b48a06929ae4b21086a8b1d15
树图思维导图提供 有理数的除法教案人教版数学七年级上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 有理数的除法教案人教版数学七年级上册教案 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:3f1680ba81652cb601a413bdae3fe50b