一次函数的基本概念和图象,特别是正比例函数的图象,在教学过程中,学生需要通过简单的作图和计算来加深对一次函数图象的理解,掌握作图的一般步骤和方法,教材注重学生在探索过程的体验,培养数学思维和数形结合的能力,理解一次函数的代数表达式与图象之间的一一对应关系,文中还提供了相关的教学任务、教学重点和难点,和教学设计和课后练习。
一次函数的图象北师大版数学初二上册教案思维导图模板大纲
一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。以下是树图网整理一次函数的图象北师大版数学初二上册教案,欢迎大家借鉴与参考!
一、学生起点分析
八年级学生已在七年级学习了"变量之间的关系",对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.
二、教学任务分析
《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.
为此本节课的教学目标是:
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.
2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.
3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.
4.理解一次函数的代数表达式与图象之间的一一对应关系.
教学重点是:
初步了解作函数图象的一般步骤:列表、描点、连线.
教学难点是:
理解一次函数的代数表达式与图象之间的一一对应关系.
三、教学过程设计
本节课设计了七个教学环节:
第一环节:创设情境 引入课题;
第二环节:画一次函数的图象;
第三环节:动手操作,深化探索;
第四环节:巩固练习,深化理解;
第五环节:课时小结;
第六环节:拓展探究;
第七环节:作业布置.
第一环节:创设情境 引入课题
内容:
一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?
我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.
效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.
第二环节:画正比例函数的图象
内容:首先我们来学习什么是函数的图象?
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).
例1 请作出正比例函数y=2x的图象.
第三环节:动手操作,深化探索
内容:做一做
(1)作出正比例函数y= 3x的图象.
(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.
请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.
(1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?
(2)正比例函数y= 3x的图象上的点(x,y)都满足关系式y= 3x吗?
(3)正比例函数y=kx的图象有什么特点?
明晰
由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.
议一议
既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?
因为"两点确定一条直线 ",所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.
14若直 线 经过第一.二.四象限,则k.b的取值范围是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函数y=3-2x
(1)求图像与两条坐标轴的交点坐标,并在下面的直角坐 标系中画出它的图像;
(2)从图像看,y随着x的增大而增 大,还是随x的增大而减小?
(3)x取何值时,y>0?
3.已知一次函数y=-2x+4
(1)画出函数的图象.
(2)求图象与x轴、y轴的交点A、B的坐标.
(3)求A、B两点间的距离.
(4)求△AOB的面积.
(5)利用图象求当x为何值时,y≥0.
1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
一次函数的图象北师大版数学初二上册教案相关文章:
★ 八年级上册数学北师大版知识点2021
★ 小学数学优秀获奖教学设计大全范文
★ 最新人教版八年级数学第14章一次函数教案范文
★ 新北师大版初中数学教学计划2021
★ 北师大版八年级下册数学知识点必看
★ 九年级上册数学的年度教学计划五篇
★ 开学数学老师教学计划模板2021
★ 人教版九年级数学上册教学计划五篇
树图思维导图提供 一次函数的应用北师大版数学初二上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 一次函数的应用北师大版数学初二上册教案 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:29096ca7a0c43e81a4c5649b55efbce4
树图思维导图提供 二元一次方程与一次函数北师大版数学初二上册教案 在线思维导图免费制作,点击“编辑”按钮,可对 二元一次方程与一次函数北师大版数学初二上册教案 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:30e8183c2de58cafa536155bb8136bb0