TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学支架式数学的教学设计案例思维导图

支架式数学的教学设计案例思维导图

  收藏
  分享
会员免费下载30积分
会员免费使用30积分
撩你成瘾 浏览量:182023-04-04 23:03:42
已被使用0次
查看详情支架式数学的教学设计案例思维导图

关于支架式数学的教学设计案例思维导图的内容,教师可以通过利用现实生活中的素材,将教材中的内容变为现实中的问题,使学生更加容易理解和掌握知识,与此教师也应该注意在教学中出现的问题,如中心问题空间过大和学生独立思考与小组讨论花费时间过多。教师还应鼓励学生独立思考,自主探索和合作交流,让学生能够在实践中掌握知识,通过这样的教学方法,学生将能够更好的理解数学知识,感受数学的力量,提升解决实际问题的能力。

思维导图大纲

支架式数学的教学设计案例思维导图模板大纲

教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的`问题,变书本知识为生活中的知识。下面是树图网整理的支架式数学的教学设计案例5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。

支架式数学的教学设计案例1

本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的"金钥匙"。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。

但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。

总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。

支架式数学的教学设计案例2

一、让学生在现实情境中体验和理解数学

《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。

不足之处:

在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识"从生活中来到生活中去"的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。

三、教师的语言非常贫乏

在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。

苏霍姆林斯基指出:"教育的艺术首先包括谈话的艺术。"教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。

支架式数学的教学设计案例3

活动目标:

1、初步感知圆柱体的外形特征。

2、会辨认圆柱体的物体,能从周围环境中找出相似的物体。

3、发展观察能力和辨别能力。

4、让幼儿懂得简单的数学道理。

5、让孩子们能正确判断数量。

活动准备:

1、教具准备:圆柱体的积木若干;

2、操作册:第6册P53.

活动过程:

1、预备活动。

(1)师幼互相问候。

(2)走线,线上游戏:摸摸快回来。圆圈中摆放若干大砖块、大积木、易拉罐。幼儿听音乐在圆圈周围自由走动。

2、集体活动。

(1)复习长方体、正方体、球体等,感知圆柱体。

请一名幼儿把双手伸到相中选中一个几何体,摸一摸、想一想,充分感知后大声地向其他幼儿描述魔道的东西是什么样的。

(2)认识圆柱体。

游戏继续进行,当幼儿摸到圆柱体,经过描述后,其他幼儿不能准确猜出是什么几何体时,教师举起圆柱体,告诉幼儿:这种形体叫圆柱体。

请幼儿在教室里找出和圆柱体的积木相同形体的物品,通过自有触摸和摆弄,感知圆柱体的外形特征。

(3)请幼儿试着滚动圆柱体和球体,观察它们在滚动的时候有什么特点,有什么不一样。并尝试从写披上向下滚,看看谁滚得快、滚得远。

3、完成操作册。

(1)教师示范、讲解操作册习题。

(2)分发幼儿操作册,教师巡回指导幼儿进行。

(3)教师批改幼儿操作册,错误的地方督促幼儿订正。

4、交流小结,收拾学具。

指导幼儿参观学习同伴的活动成果,收拾操作材料。

活动反思:

本节课的内容是学生已经掌握了长方体、正方体、圆的知识基础上进行教学的,这也为后面学习圆锥的知识奠定了基础。

成功之处:

1.注重知识的拓展。在教学圆柱的认识时,通过把一张长方形的硬纸贴在木棒上,快速转动木棒,让学生观察转动起来后的形状是一个圆柱形。对于这个形状学生很容易想到,但是对于这个内容背后的知识更加需要学生掌握。在教学中我没有把知识点止于这一步,而是利用教具让学生清楚的观察到:当以长方形的长为轴旋转,长就是圆柱的高,宽就是圆柱的底面半径;当以长方形的宽为轴旋转,宽就是圆柱的底面半径,即以长方形的哪条边为轴旋转,哪条边就是圆柱的高,而另一条边就是圆柱的底面半径。通过这样的教学,学生在解决相应的问题时就不会感到无从下手,同时也培养了学生的空间想象能力。

2. 加强学生的动手操作,注重圆柱知识的推导过程。在教学圆柱的侧面积时,通过学生的动手操作,让学生对圆柱的侧面展开图是长方形有了一个清晰的认识,特别是圆柱的侧面积公式的推导过程,学生发现了长方形的长=圆柱的底面周长,宽=圆柱的高。因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。

3.注重数学思想方法的渗透。在教学圆柱的体积时通过教具的现场演示,学生清晰地看到了圆柱转化成长方体的过程,学生很容易发现:长方体的体积等于圆柱的体积,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,由此推导出圆柱的体积公式也是底面积乘高,并进一步推导V=∏r2h。在这一过程中,学生发现虽然形状发生了改变,但是体积不变,这也是数学教学中需要学生掌握的数学思想方法,除此之外,转化思想也是必不可少,这两种数学思想方法在解决问题过程中有着至关重要的作用,这对于以后的学习,对于学生的终身学习有着不可估量的作用。徐云鸿主任说:几何直观于学生而言,是一种有效的学习方式;于教师而言,是一种有效的教学手段。它是数形结合思想的体现,在小学数学教学中是不可缺少的、重要的数学思想方法。虽然徐老师说的是几何直观,但是对于其它在小学阶段中必须渗透的变中不变思想、转化思想也是是不可缺少的、重要的数学思想方法。

支架式数学的教学设计案例4

教学内容:

练习三第10~16题、思考题、动手做。

教学目标:

1.使学生在具体的解决问题情境中,进一步体会底面积、侧面积、表面积和容积这些概念的联系和区别,积累解决问题的方法和经验。

2.提高学生应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。

3.使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学重点:

运用圆柱体积公式解决实际问题。

教学难点:

根据实际情况运用圆柱体积公式解决实际问题。

教学过程:

一、复习回顾,理清思路。

1.回顾复习。

教师谈话:用一句话介绍前面几节课学习的关于圆柱的知识。

预设学生回答:圆柱的体积计算;圆柱的特征;圆柱表面积的计算方法和各种情况。

2.理清思路。

同桌说说计算圆柱体积的步骤,先算出底面积,再算出圆柱的体积;

同桌说说计算圆柱表面积的步骤,先算出底面积和侧面积,再算出圆柱的表面积;

3.揭示课题——圆柱表面积和体积的练习课。

二、基本练习,形成技能。

1.练习三第10题。

根据表中的已知分别计算每个圆柱的未知量。学生独立完成。

2.练习三第11题。

学生读题,理解题意。注意分清3个小问题分别求什么问题。

3.练习三第12题。

引导思考:第1个问题求水池里最多能蓄水多少吨,要从体积入手;第2个问题要弄清楚求的是几个面的面积之和。

4.练习三第13题。

学生读题,分析题意。之后一人板演,全班齐练。评讲时注意后进生的辅导。

5.练习三第14题。

⑴出示题目,理解题目意思。

⑵讨论:塑料薄膜的面积相当于什么?

大棚内的空间相当于什么?

⑶分别怎么算?

引导理解:蔬菜大棚中求需要多少塑料薄膜和空间有多大,分别求圆柱表面积和体积的一半。

6.练习三第15题。

分析:玲玲把一块长方体橡皮泥捏成一个圆柱体虽然形状变了,但什么没变?(体积)

7.练习三第16题。

提问:要求水面高多少分米,要先求什么?(水杯的高)

三、拓展延伸,开阔思维。

1.第19页思考题。

学有余力学生完成。

⑴把圆钢竖着拉出水面8厘米,水面下降4厘米,你能想到什么?

⑵全部浸入,水面上升9厘米,你又能想到什么?怎么算出这个圆钢的体积?

⑶这题还可以怎么想?

让学生明白:上升或下降的水的体积就是那一部分钢材的体积。

支架式数学的教学设计案例5

教学内容:

教材第11页的例2.第12页的例3和第12页的"练一练",完成练习二第4~6题。

教学目标:

1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。

3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

重点难点:

1.理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

2.培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

教学资源:

师生各备一易拉罐,并把上下面用彩纸包好,剪刀、胶水、圆规、白纸一张、计算器。

教学过程:

一、实验导入,渗透思想

⒈(出示一张长方形纸)老师这儿有一张长方形纸,我想让它站起来,你有什么办法吗?

小结:原来在一定条件下平面可以"化直为曲"。

⒉把这个圆柱形的纸筒打开后是什么形状?

小结:同样地,在一定条件下曲面可以"化曲为直"。

⒊揭题:这节课将运用这个知识来研究圆柱的侧面积和表面积。(板:圆柱的侧面积和表面积)

二、引导探究,学习新知

(一)圆柱的侧面积的计算。

老师发现同学们特别爱喝饮料,今天我们共同带来了一瓶椰子汁,看到它,你能提出什么数学问题来?

师引导:我们就来先来解决这位同学提出的商标纸问题,其实就是求什么?(圆柱的侧面积)

1.引导探究圆柱侧面积的计算方法

①设疑:圆柱的侧面是个曲面,怎样计算商标纸的面积呢?

②全班交流:沿着接缝把商标纸剪开,再展平。

③小组合作探究

那就让我们一起来研究一下,听清要求:先独立剪开商标纸展开,再观察展开后的图形与原来的圆柱有什么关系?把你的发现在小组里交流一下。接头处忽略不计。

④汇报交流:哪个小组愿意上来汇报一下你们的发现?指名上台拿着学具汇报,生。(师再追问:通过刚才同学的汇报,我们知道了这个长方形的长和宽与圆柱有什么关系呀?学生回答,师适时板书)

⑤怎样计算圆柱的侧面积?再次追问:为什么?(补充板书)

⑥小结:你们真不错,巧妙地运用化曲为直,探讨发现了圆柱侧面积的计算方法。

2.计算圆柱的侧面积

①现在请你计算一下这罐椰子汁所用商标纸的面积(出示椰奶罐的底面周长约是 厘米,高约是 厘米)你是怎样算的?

②解决例2

但在实际生活中有时不直接告诉你底面周长,例如怎么算?学生独立做在书上,指名一生板演,集体反馈。

支架式数学的教学设计案例相关文章:

★ 好玩的数学趣味教学设计方案五篇

★ 学生数学教学设计方案5篇推荐

★ 小学数学优秀教学设计模板五篇

★ 数学教学设计

★ 数学课本章节的教学设计5篇

★ 小学数学教学设计模板5篇

★ 小学学生数学课堂教学设计5篇

★ 数学课堂的标准教学设计范文

★ 小学低年级数学教学设计方案5篇

★ 学习数学教学设计方法方案