高中数学等差数列求和公式有哪些思维导图其中等差数列公式,前n项和公式,其他公式和性质都是掌握的基本点,在解这种数学问题时,要先把注意力集中公差和性质上,明确题目的隐含条件后在考虑如何解题,还有一些常见数列前n项和的公式,例如1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2,2+4+6+8+10+12+14+…+(2n)=n(n+1),和12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6,学好高中数学要深入掌握这些知识点,建议复习时要重新证明并温故知新,加深自己的理解。
高中数学等差数列求和公式 有哪些思维导图模板大纲
如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提高快
等差数列公式an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2
若公差d=1时:Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
第n项的值an=首项+(项数-1)×公差
前n项的和Sn=首项+末项×项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)
项数=(末项-首项)÷公差+1
数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
以上n均为正整数
等差数列是常见数列的一种,首先我们看一下他的定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1),他的公差是2。
他的推导公式及其证明思路要看清楚,并且一定要自己亲自动手重新证明下,就算是写一下也是好的。总之概念的东西一定要把它吃透,后面的东西都是围绕概念来展开的,他是核心。还有他的很多性质,在书中的证明的启发下,可以自己尝试证明,这样以期收到深刻的印象,和真正深入透彻了解数列求和,抓住核心!
从其定义来看,要求和。我们可以把主要着眼点:公差、性质。弄清楚这两点之后根据题目来审题,找出隐含条件来。
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
树图思维导图提供 乌审旗国有投资集团有限公司 在线思维导图免费制作,点击“编辑”按钮,可对 乌审旗国有投资集团有限公司 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:5a28142386bd70b085d0dfa0b38ffb1d
树图思维导图提供 说文解字戏美国总统大选 在线思维导图免费制作,点击“编辑”按钮,可对 说文解字戏美国总统大选 进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:062e27e31bfd81ad6f3ed78f2a4c7de2