TreeMind树图在线AI思维导图
当前位置:树图思维导图模板基础教育数学初一下北师大数学教案范文思维导图

初一下北师大数学教案范文思维导图

  收藏
  分享
免费下载
免费使用文件
微风不燥 浏览量:52023-04-04 21:53:29
已被使用0次
查看详情初一下北师大数学教案范文思维导图

模板展示了关于初一下北师大数学教案范文思维导图的教学目标、重点和难点,学生不仅需要知道全等形、全三角形及全三角形的对应元素,也需要在找全三角形的对应边、对应角上有所提高,通过引入动画和让学生自己动手实践,学生可以更好的理解全三角形的性质,如对应边和对应角的关系,多种找对应元素的方法,如翻折法、旋转法和平移法。

思维导图大纲

初一下北师大数学教案范文思维导图模板大纲

如果教师的教学设计做得太精确,甚至太死板,而缺乏伸缩性,那么就很容易陷入机械、僵化的泥淖之中。今天树图网在这里给大家分享一些有关于最新初一下北师大数学教案范文,希望可以帮助到大家。

最新初一下北师大数学教案范文1

教学目标:

1、知识目标:

(1)知道什么是全等形、全等三角形及全等三角形的对应元素;

(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

(3)能熟练找出两个全等三角形的对应角、对应边。

2、能力目标:

(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;

(2)通过找出全等三角形的对应元素,培养学生的识图能力。

3、情感目标:

(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、全等形及全等三角形概念的引入

(1)动画(几何画板)显示:

问题:你能发现这两个三角形有什么美妙的关系吗?

一般学生都能发现这两个三角形是完全重合的。

(2)学生自己动手

画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

(3)获取概念

让学生用自己的语言叙述:

全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发现:

(1)电脑动画显示:

问题:对应边、对应角有何关系?

由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用

(1) 投影显示题目:

D、AD∥BC,且AD=BC

分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

说明:根据位置元素来找:有相等元素,其即为对应元素:

然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

说明:利用"运动法"来找

翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

求证:AE∥CF

分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

∴AE∥CF

说明:解此题的关键是找准对应角,可以用平移法。

分析:AB不是全等三角形的对应边,

但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

可利用已知的AD与BC求得。

说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

(2)题目的解决

这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

投影显示:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)

4、课堂独立练习,巩固提高

此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

5、小结:

(1)如何找全等三角形的对应边、对应角(基本方法)

(2)全等三角形的性质

(3)性质的应用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a.书面作业P55#2、3、4

b.上交作业(中考题)

最新初一下北师大数学教案范文2

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用.

本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,"两边之和大于第三边"指的是"任何两边的和"都"大于第三边"而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方.

2、教法建议

没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下:

(1)强化能力

新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例.

通过阅读,使学生初步认识数学概念的含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力

(2)主动获取

在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第

一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维

由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到"推论",此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段 , ( ),若第三条线段c满足 - c则线段 , ,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识.

(4)加深理解

进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据.

整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展.

教学目标:

(1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;

(2)弄清三角形按边的相等关系的分类;

(3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;

(4)通过三角形三边关系定理的学习,培养学生转化的能力;

(5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.

教学重点:三角形三边关系定理及推论

教学难点:三角形按边分类及利用三角形三边关系解题

教学用具:直尺、微机

教学方法:谈话、探究式

教学过程:

1、阅读新课,回答问题

先让学生阅读教材的第一部分,然后回答下列问题:

(1)这一部分教材中的数学概念有哪些?(指出来并给予解释)

(2)等腰三角形与等边三角形有什么关系?

估计有的学生可能把等腰三角形和等边三角形看成独立的两类.

(3)写出三角形按边的相等关系分类的情况.

教师最后板书给出.

(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)

2、发现并推导出三边关系定理

问题1:用长度为4cm、10cm、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)

问题2:你能解释上述结果的原因吗?

问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?

定理:三角形两边的和大于第三边

(发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)

3、导出三边关系定理的推论及其它两种方法

由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:

估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.

推论:三角形两边的差小于第三边

(给每一个学生表现个人数学语言表达才能的机会)

能否简化上面定理及推论?从而得到如下两种判定方法:

(1)、已知线段 , ( ),若第三条线段c满足 - c则线段 , ,c可组成一个三角形.

4、三角形三边关系定理及推论的应用

例1判断题:(出示投影)

(1)等边三角形是等腰三角形

(2)三角形可分为不等边三角形、等腰三角形和等边三角形

(3)已知三线段 满足 ,那么 为边可构成三角形

(4)等腰三角形的腰比底长

(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)

(本例要求学生说出解题思路,教师点到为止)

例3一个等腰三角形的周长为18 .

(1) 已知腰长是底边长的2倍,求各边长.

(2) 其中一边长4 ,求其他两边长.

这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.

(数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)

例4 草原上有4口油井,位于四边形ABCD的4个顶点,

如图1现在要建一个维修站H,试问H建在何处,

才能使它到4口油井的距离HA+HB+HC+HD为最小,

说明理由.

本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.

5、小结

本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:

(1)判断三条已知线段能否组成三角形

采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.

(2)确定三角形第三边的取值范围

两边之差<第三边<两边之和

若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构.

6、布置作业

a. 书面作业P41#8、9

b. 思考题:1、在四边形ABCD中,AC与BD相交于P,求证:

(AB+BC+CD+AD)<ac+bd<ab+bc+cd+ad< p="">

2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范围,所以可知最多可以由7根火柴棒组成)

最新初一下北师大数学教案范文3

教学目标

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.

教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.

教学难点:等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成"等边对等角").

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作"三线合一").

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结.

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

Ⅴ.作业: 课本P56习题12.3第1、2、3、4题.

板书设计

12.3.1.1 等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质: 1.等边对等角 2.三线合一

最新初一下北师大数学教案范文4

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系.

教学重点: 等腰三角形的判定定理及推论的运用

教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

教学过程:

一、复习等腰三角形的性质

二、新授:

I提出问题,创设情境

出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习"等腰三角形的判定".

II引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证.

2、小结,通过论证,这个命题是真命题,即"等腰三角形的判定定理"(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称"等角对等边".

4.引导学生说出引例中地质专家的测量方法的根据.

III例题与练习

1.如图2

其中△ABC是等腰三角形的是 [ ]

2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

④若已知 AD=4cm,则BC______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

V布置作业:P56页习题12.3第5、6题

最新初一下北师大数学教案范文5

教学目的

1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

2. 熟识等边三角形的性质及判定.

2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

教学重点: 等腰三角形的性质及其应用。

教学难点: 简洁的逻辑推理。

教学过程

一、复习巩固

1.叙述等腰三角形的性质,它是怎么得到的?

等腰三角形的两个底角相等,也可以简称"等边对等角"。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。

等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称"三线合一"。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此"三线合一"。

2.若等腰三角形的两边长为3和4,则其周长为多少?

二、新课

在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

等边三角形具有什么性质呢?

1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

2.你能否用已知的知识,通过推理得到你的猜想是正确的?

等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。

3.上面的条件和结论如何叙述?

等边三角形的各角都相等,并且每一个角都等于60°。

等边三角形是轴对称图形吗?如果是,有几条对称轴?

等边三角形也称为正三角形。

例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。

分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由"三线合一"可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

问题2:求∠1是否还有其它方法?

三、练习巩固

1.判断下列命题,对的打"√",错的打"×"。

a.等腰三角形的角平分线,中线和高互相重合( )

b.有一个角是60°的等腰三角形,其它两个内角也为60°( )

2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。

3.P54练习1、2。

四、小结

由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。"三线合一"性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

五、作业: 1.课本P57第7,9题。

2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

初一下北师大数学教案范文相关文章:

★ 新北师大版七年级上册数学教案最新范文

★ 新北师大七年级上册数学教案2021模板

★ 北师大版一年级数学下册教案最新范文

★ 北师大一年级下册数学教案2021例文

★ 北师大版小学数学教案范文五篇

★ 北师大版一年级下册数学教案最新模板

★ 北师大一年级数学上下教案最新范文

★ 一年级下册数学教案2021最新北师大

★ 北师大一年级数学下册教案最新文案

★ 北师大版小学一年级下册数学教案最新文档

相关思维导图模板

平行线与相交线北师大版数学初一下册教案思维导图

树图思维导图提供 平行线与相交线北师大版数学初一下册教案 在线思维导图免费制作,点击“编辑”按钮,可对 平行线与相交线北师大版数学初一下册教案  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:3c0f2311c032d98c99cca672c67807b0

频率的稳定性北师大版数学初一下册教案思维导图

树图思维导图提供 频率的稳定性北师大版数学初一下册教案 在线思维导图免费制作,点击“编辑”按钮,可对 频率的稳定性北师大版数学初一下册教案  进行在线思维导图编辑,本思维导图属于思维导图模板主题,文件编号是:8305e5eb1296630e0ed6e2432ca4baec