本模板主要提供了一份关于特级教案六年级数学湖南的答案例文思维导图,的知识点包含教学目标、重点难点、教学过程、反馈与检测,这个模板主要有助于教师理解和处理教学设计的基本结构,以达到灵活地应对不同教学课型的目的,思维导图模板的教学过程还包含了反比例、数学知识、逻辑思维的内容,帮助学生感知生活中的数学知识并掌握成反比例的量的变化规律特征,教学过程中,教师通过课前预习、展示与交流、反馈与检测方式引导学生独立思考,并兴趣,学习积极性。
特级教案六年级数学湖南的答案例文思维导图模板大纲
我们对于教学设计的结构安排最终还是要以具体的课程内容、教学任务以及实际班级学情为准绳,这需要我们要灵活地理解和处理教学设计的基本结构,针对不同的课型做出多样化的安排。今天树图网在这里整理了一些2021特级教案六年级数学湖南的答案例文,我们一起来看看吧!
教学目标:
1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例
2.培养学生的逻辑思维能力
3.感知生活中的数学知识
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其 特征
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习
预习24---26页内容
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律
情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考
同桌交流,用自己的语言表达
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定
情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系
写出关系式:每杯果汁量×杯数=果汗总量(一定)
5、以上两个情境中有什么共同点?
反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想
二、 反馈与检测
1、判断下面每题是否成反比例
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材"练一练"P33第1题。
3、教材"练一练"P33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)
教学过程:
一、复习
1、什么叫做"成正比例的量"?
2、判断两种量是否成正比例关键是什么?
3、练习:课本表中的两种量是不是成正比例?为什么?
二、小组协作 概括"成反比例的量"的意义
(一)活动一
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)
6、如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)
1、课件出示例3,指名读题,学生独立完成
2、总结归纳出正比例和反比例的相同点和不同点
三、强化练习 发展提高
1判定两个量是否成反比例,主要看它们的( )是否一定。
2全班人数一定,每组的人数和组数。
( )和( )是相关联的量。
每组的人数×组数=全班人数(一定)
所以( )和( )是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书: xy =k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量 xy=k(一定)
每小时加工数×加工时间=零件总数(一定)
每本页数×装订本数=纸的总页数(一定)
教学目标:
1、在具体情境中,通过"画一画"的活动,初步认识正比例图象。
2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
3、利用正比例关系,解决生活中的一些简单问题。
教学重点:
会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。
教学难点:
利用正比例关系,解决生活中的一些简单问题。
教学准备:
多媒体课件
教学过程:
一、复习
师:通过上节课的学习,同学们能根据正比例的特征来判断两个变量是否成正比例。首先,请同学们回忆一下,正比例要满足哪两个条件?
生:要满足两个条件
1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少;
2、两种量相对应的比值不变。
师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么?
生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。
师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画)
(设计意图:复习上节课正比例的有关知识,导入本课。)
二、动手画图,理解含义。
填表,说一说表中两个量的关系。
一个数 0 1 2 3 4 5 6 7 8 9 10
这个数的5倍
(1)学生填表。
(2)学生汇报。
(3)谁能说一说这两个量的关系。
这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。
(设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。)
三、试一试
1、在下图中描点,表示第20页两个表格中的数量关系。
2、思考:连接各点,你发现了什么?
生:所有的点在都在同一条直线上。
(设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)
四、练一练
1、圆的半径和面积成正比例关系吗?为什么?
师:因为圆的面积和半径的比值不是一个常数。
师:请同学们观察课本上的图,看一看不成正比例的两个量所形成的的图形是不是一条直线?
(设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。)
2、乘船的人数与所付船费为:(数据见书上)
(1)将书上的图补充完整。
(2)说说哪个量没有变?
(3)乘船人数与船费有什么关系?
(4)连接各点,你发现了什么?
3、回答下列问题
(1)圆的周长与直径成正比例吗?为什么?
(2)根据右图,先估计圆的周长,再实际计算。
(3)直径为5厘米的圆的周长估计值为( ),实际计算值为( )。
(4)直径为15厘米的圆的周长估计值为( ),实际计算值为( )。
4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)
(设计意图:通过以上练习,巩固所学。)
教学目标:
1、在具体情境中,通过"画一画"的活动,初步认识正比例图象。
2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
3、利用正比例关系,解决生活中的一些简单问题。
教学重点:目标1、2。
教学难点:目标2、3。
教学过程:
活动一;判断下面的量是否成正比例关系?
1、 每行人数一定,总人数和行数。
2、 长方形的长一定,面积和宽。
3、 长方体的底面积一定,体积和高。
4、分子一定,分母和分数值。
5、长方形的周长一定,长和宽。
6、一个自然数和它的倒数。
7、正方形的边长与周长。
8、 正方形的边长与面积。
9、 圆的半径与周长。
10、 圆的面积与半径。
11、什么样的两个量叫做成正比例的量?
活动二:探索一个数与它的5倍之间的关系。
1、求出一个数的5倍,在书上表格填写。
2、判断一个数的5倍和这个数有怎样的关系?
小结:一个数和它的5倍之间具有正比例关系。
3、请观察横轴表示什么?纵轴表示什么?然后,根据上表说说各点表示的含义。
4、连接各点,你发现了什么?
5、 利用书上的图,把下表填完整。
找一找这组数据在统计图上的位置,读出未知数据再算一算,比较两次结果。
活动三:试一试。
1、在下图中描点,表示第20页两个表格中的数量关系。
2、思考;连接各点,你发现了什么?
发现:所描的点都在同一条直线上。
活动四:练一练。
1、 圆的半径和面积成正比例关系吗?为什么?
2、 乘船的人数与所付船费为:(数据见书上)
(1)将书上的图补充完整。
(2)说说哪个量没有变?
(3)乘船人数与船费有什么关系?
(4) 连接各点,你发现了什么?
3、回答下列问题:
(1)圆的周长与直径成正比例吗?为什么?
(2) 根据右图,先估计圆的周长,再实际计算。
(3) 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。
(4) 直径为15厘米的圆的周长估计值为( ),实际计算值为( )。
4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)
★ 小学六年级上册数学优秀教案范文三篇
★ 六年级下册数学鼎尖教案最新例文
★ 小学六年级上册数学教案范文三篇
★ 人教版六年级上册数学优秀教案范文三篇
★ 六年级数学兴趣小组教案最新例文
★ 六年级数学兴趣班教案最新范文
★ 6年级下册数学教案最新例文
★ 六年级数学教案
★ 小学六年级数学总复习教案三篇
★ 人教版六年级上册数学教案范文三篇